【題目】為傳播奧運(yùn)知識(shí),小剛就本班學(xué)生對(duì)奧運(yùn)知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì):A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:
(1)求該班共有多少名學(xué)生;
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果全年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生人數(shù).

【答案】
(1)解:20÷50%=40,

∴該班共有40名學(xué)生


(2)解:表示“一般了解”的人數(shù)為40×20%=8人,

補(bǔ)全條形圖如下:


(3)解:“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù)為360°× =108°
(4)解:1000× =300(人),

答:估算全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生人數(shù)為300人.


【解析】(1)利用A所占的百分比和相應(yīng)的頻數(shù)即可求出;(2)利用C所占的百分比和總?cè)藬?shù)求出C的人數(shù)即可;(3)求出“了解較多”部分所占的比例,即可求出“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù);(4)利用樣本估計(jì)總體,即可求出全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生.
【考點(diǎn)精析】利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:2x﹣9=5x+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤(rùn)=售價(jià)-制造成本)

(1)寫出每月的利潤(rùn)z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤(rùn)?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤(rùn),那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)規(guī)定一種新運(yùn)算“※”:abab,如3※2=32=9,則(﹣2)※3等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a(1+a)﹣a(1﹣a)的結(jié)果為(
A.2a
B.2a2
C.0
D.﹣2a+2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式1﹣2x<6的負(fù)整數(shù)解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=-2020x2+2019x有最_____值(填“大”或“小”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知☉O上兩個(gè)定點(diǎn)A、B和兩個(gè)動(dòng)點(diǎn)C、D,AC與BD交于點(diǎn)E。

(1)如圖1,求證EA·EC=EB·ED

(2)如圖2,若弧AB=弧BC,AD是☉O的直徑,求證;AD·AC=2BD·BC

(3)如圖3,若AC上BD,BC=3,求點(diǎn)0到弦AD的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案