【題目】如圖,為的對角線的交點,過點作直線分別交,于點,.
(1)求證:.
(2)若,,,求四邊形的周長.
(3)若,直接寫出的值為______.
【答案】(1)見解析;(2)12;(3)20.
【解析】
(1)由四邊形ABCD是平行四邊形,得到CD∥AB,OC=OA由平行線的性質(zhì)得到∠OAB=∠OCD,推出△OAF≌△OCE(ASA).根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)△DEO≌△BFO得到OE=OF=1.5,BF=DE,于是得到EF=3,BF+CE=AB=5,即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)即可得到SABCD=2S四邊形CEFB=10×2=20.
解:(1)證明:四邊形是平行四邊形,
,,
,又,
..
(2)同(1)可證△DEO≌△BFO(ASA).
∴OE=OF=1.5,BF=DE,
∴EF=3,BF+CE=AB=5,
∴四邊形EFBC的周長=3+5+4=12
(3)∵△DEO≌△BFO,
∴S四邊形CEFB=S△BCD,
∴SABCD=2S四邊形CEFB=10×2=20,
故答案為20.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,、、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網(wǎng)格點和直尺畫圖:
(1)在網(wǎng)格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2臺大收割機和5臺小收割機同時工作2 h共收割小麥3.6hm2,3臺大收割機和2臺小收割機同時工作5 h共收割小麥8 hm2.1臺大收割機和1臺小收割機每小時各收割小麥多少公頃?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為6cm的正方形ABCD中,動點P從點A出發(fā),沿線段AB以每秒1cm的速度向點B運動;同時動點Q從點B出發(fā),沿線段BC以每秒2cm的速度向點C運動.當點Q到達C點時,點P同時停止,設運動時間為t秒.(注:正方形的四邊長都相等,四個角都是直角)
(1)CQ的長為______cm(用含的代數(shù)式表示);
(2)連接DQ并把DQ沿DC翻折,交BC延長線于點F.連接DP、DQ、PQ.
①若,求t的值.
②當時,求t的值,并判斷與是否全等,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數(shù),的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點點A在點B的左側(cè),與x軸負半軸交于點C.
填空:該拋物線的“夢想直線”的解析式為______,點A的坐標為______,點B的坐標為______;
如圖,點M為線段CB上一動點,將以AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的“夢想三角形”,求點N的坐標;
當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=-與一次函數(shù)y=kx+b的圖象交于A、B兩點,且點A的橫坐標和點B的縱坐標都是-2.
求:(1)一次函數(shù)的解析式;
(2)△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ABD都是⊙O的內(nèi)接三角形,圓心O在邊AB上,邊AD分別與BC,OC交于E,F兩點,點C為的中點.
(1)求證:OF∥BD;
(2)若點F為線段OC的中點,且⊙O的半徑R=6 cm,求圖中陰影部分(弓形)的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com