【題目】王杰同學(xué)在解決問(wèn)題“已知A、B兩點(diǎn)的坐標(biāo)為A(3,﹣2)、B(6,﹣5)求直線AB關(guān)于x軸的對(duì)稱直線A′B′的解析式”時(shí),解法如下:先是建立平面直角坐標(biāo)系(如圖),標(biāo)出A、B兩點(diǎn),并利用軸對(duì)稱性質(zhì)求出A′、B′的坐標(biāo)分別為A′(3,2),B′(6,5);然后設(shè)直線A′B′的解析式為y=kx+b(k0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組,解得,最后求得直線A′B′的解析式為y=x﹣1.則在解題過(guò)程中他運(yùn)用到的數(shù)學(xué)思想是(

A.分類討論與轉(zhuǎn)化思想 B.分類討論與方程思想

C.?dāng)?shù)形結(jié)合與整體思想 D.?dāng)?shù)形結(jié)合與方程思想

【答案】D

【解析】

試題分析:第一步:建立平面直角坐標(biāo)系,標(biāo)出A、B兩點(diǎn),并利用軸對(duì)稱性質(zhì)求出A′、B′的坐標(biāo)分別為A′(3,2),B′(6,5),這是依據(jù)軸對(duì)稱的性質(zhì)求得點(diǎn)的坐標(biāo)(有序?qū)崝?shù)對(duì)),運(yùn)用了數(shù)形結(jié)合的數(shù)學(xué)思想;

第二步:設(shè)直線A′B′的解析式為y=kx+b(k0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組,解得,最后求得直線A′B′的解析式為y=x﹣1,這里根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,列出方程求得待定系數(shù),運(yùn)用了方程思想;

所以王杰同學(xué)在解題過(guò)程中,運(yùn)用到的數(shù)學(xué)思想是數(shù)形結(jié)合與方程思想.故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a________時(shí),(2+a)x﹣7>5是關(guān)于x的一元一次不等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界上最小的開(kāi)花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實(shí)像一個(gè)微小的無(wú)花果,質(zhì)量只有0.000000076克,將數(shù)0.000000076用科學(xué)記數(shù)法表示為( )
A.7.6×109
B.7.6×108
C.7.6×109
D.7.6×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.

(1)從小剛家到該景區(qū)乘車一共用了多少時(shí)間?

(2)求線段AB對(duì)應(yīng)的函數(shù)解析式;

(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(  )

A.(﹣a23a6B.a2+2a3a3

C.ab23a3b5D.(﹣a2a3a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4x2-16=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)( ﹣π)0 +(﹣1)2017
(2) ﹣( ﹣3 )×

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.

(1)求tan∠DBC的值;

(2)求證:四邊形OBEC是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案