【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關(guān)系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當(dāng)客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

【答案】1的函數(shù)關(guān)系式為)(2客車和貨車的平均速度分別為千米/小時和千米/小時.甲地與加油站的距離為千米

【解析】

試題(1)利用時間t與速度v成反比例可以得到反比例函數(shù)的解析式;

2由客車的平均速度為每小時v千米,得到貨車的平均速度為每小時(v-20)千米,根據(jù)一輛客車從甲地出發(fā)前往乙地,一輛貨車同時從乙地出發(fā)前往甲地,3小時后兩車相遇列出方程,解方程即可;

分兩種情況進行討論:當(dāng)A加油站在甲地和B加油站之間時;當(dāng)B加油站在甲地和A加油站之間時;都可以根據(jù)甲、乙兩地間有兩個加油站A、B,它們相距200千米列出方程,解方程即可.

試題解析:(1)設(shè)函數(shù)關(guān)系式為v=

∵t=5,v=120,

∴k=120×5=600,

∴vt的函數(shù)關(guān)系式為v=5≤t≤10);

2依題意,得

3v+v-20=600,

解得v=110,

經(jīng)檢驗,v=110符合題意.

當(dāng)v=110時,v-20=90

答:客車和貨車的平均速度分別為110千米/小時和90千米/小時;

當(dāng)A加油站在甲地和B加油站之間時,

110t-600-90t=200,

解得t=4,此時110t=110×4=440;

當(dāng)B加油站在甲地和A加油站之間時,

110t+200+90t=600,

解得t=2,此時110t=110×2=220

答:甲地與B加油站的距離為220440千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDEF中,ABDE,點A,FC,D在同一直線上,AFCD,∠AFE=∠BCD

試說明:

1ABC≌△DEF;

2BFEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中,每個小正方形的邊長為1,每個小正方形的頂點都叫做格點.△ABC的頂點A、BC都在格點上.

(1)BAC的平行線BD

(2)作出表示BAC的距離的線段BE

(3)線段BEBC的大小關(guān)系是:BE   BC(、、“=”)

(4)ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)家的飲水機中原有水的溫度為20 ℃,其工作過程如圖所示.在一個由20 ℃加熱到100 ℃再降溫到20 ℃的過程中,水溫記作y(℃),從開始加熱起時間變化了x(分),加熱過程中,y與x滿足一次函數(shù)關(guān)系,水溫下降過程中,y與x成反比例,當(dāng)x=20時,y=40.

(1)寫出水溫下降過程中y與x之間的函數(shù)表達(dá)式,并求出x為何值時,y=100;

(2)求加熱過程中y與x之間的函數(shù)表達(dá)式;

(3)求當(dāng)x為何值時,y=80.

問題解決

若嘉淇同學(xué)上午八點將飲水機通電開機后立刻外出散步,預(yù)計九點前回到家中,若嘉淇想喝到不低于50 ℃的水,則直接寫出她外出的時間m(分)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) ykx+b 的圖象與坐標(biāo)軸分別交于 A、B 兩點,與反比例函數(shù) y 的圖象在第一象限的交點為點 C,CDx 垂足為點 D,OB=3,OD=6,AOB 的面積為 3.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)直接寫出當(dāng) x>0 時,kx+b>0 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示的數(shù)是,且滿足,多項式是五次四項式.

1的值為 ,的值為 的值為

2)已知點是數(shù)軸上的兩個動點,點以每秒3個單位的速度向右運動,同時點從點出發(fā),以每秒7個單位的速度向左運動:

①若點從點出發(fā),點和點經(jīng)過秒后,在數(shù)軸上的點處相遇,求的值和點所表示的數(shù);

②若點先從點出發(fā),運動到點處,點再出發(fā),則點運動幾秒后兩點之間的距離為5個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用小木棒擺成第1個圖形所需要的木棒根數(shù)是4根,擺成第2個圖形所需要的木棒根數(shù)是12根,擺成第3個圖形所需要的木棒根數(shù)是24根……按照此規(guī)律擺放,擺成第10個圖形所需要的木棒根數(shù)是__________根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們環(huán)保意識的增強,越來越多的人選擇低碳出行,各種品牌的山地自行車相繼投放市場.順風(fēng)車行五月份型車的銷售總利潤為元,型車的銷售總利潤為.型車的銷售數(shù)量是型車的倍,已知銷售型車比型車每輛可多獲利.

1)求每輛型車和型車的銷售利潤;

2)若該車行計劃一次購進兩種型號的自行車共臺且全部售出,其中型車的進貨數(shù)量不超過型車的倍,則該車行購進型車、型車各多少輛,才能使銷售總利潤最大?最大銷售總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.據(jù)統(tǒng)計,每輛車的月租金為4000元時,可全部租出.每輛車的月租金每增加100元,未租出的車將增加1.租出的車每輛每月的維護費為500元,未租出的車每輛每月只需維護費100.

1)當(dāng)每輛車的月租金為4600元時,能租出多少輛?并計算此時租賃公司的月收益(租金收入扣除維護費)是多少萬元?

2)規(guī)定每輛車月租金不能超過7200元,當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達(dá)40.4萬元?

3)當(dāng)每輛車的月租金定為_________元時,租賃公司的月收益最大.

查看答案和解析>>

同步練習(xí)冊答案