【題目】如圖,P是弧AB所對弦AB上一動點,過點P作PC⊥AB交弧AB于點C,取AP中點D,連接CD.已知AB=6cm,設A,P兩點間的距離為xcm,C.D兩點間的距離為ycm.(當點P與點A重合時,y的值為0;當點P與點B重合時,y的值為3)

小凡根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小凡的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

3.2

3.4

3.3

3

(2)建立平面直角坐標系,描出補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

(3)結合所畫出的函數(shù)圖象,解決問題:當∠C=30°時,AP的長度約為多少cm.

【答案】(1)CD≈2.9.(2)利用描點法畫出圖象如圖所示見解析;(3)AP的長度為3.3.

【解析】

(1)根據(jù)對稱性可知:當x=2和x=4時,PABP′=2,因為PCABPC′⊥AB,即可推出PCPC′=,再利用勾股定理即可解決問題;(2)利用描點法即可解決問題;(3)函數(shù)圖象與直線yx的交點的橫坐標即為PA的長,利用圖象法即可解決問題;

(1)如圖,根據(jù)對稱性可知:

根據(jù)對稱性可知:當x=2和x=4時,PA=BP′=2,

∵PC⊥AB,P′C′⊥AB,

∴PC=P′C′=

∴CD=≈2.9.

(2)利用描點法畫出圖象如圖所示:

(3)當∠DCP=30°時,CD=2PD,即y=x,

觀察圖象可知:與函數(shù)圖象與直線y=x的交點為(3.3,3.3),

∴AP的長度為3.3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4/秒,求這架無人飛機的飛行高度.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2;

1)求反比例函數(shù)的表達式;

2)根據(jù)圖象直接寫出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點O為正方形ABCD對角線的交點,且正方形ABCD的邊均與某條坐標軸平行或垂直,AB4

(1)如果反比例函數(shù)y的圖象經(jīng)過點A,求這個反比例函數(shù)的表達式;

(2)如果反比例函數(shù)y的圖象與正方形ABCD有公共點,請直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是函數(shù)y=的圖象上關于原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積記為S,則S=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸的負半軸、y軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉,使點B落在y軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計,結果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某幾何體從不同方向看它得到的平面圖形,其中從正面、左面看到的是長方形,而從上面看到的是直角三角形.

(1)寫出這個幾何體的名稱:___________;

(2)若從正面看它得到的長方形的長為15 cm,寬為4 cm; 從左面看它得到的長方形的寬為3 cm;而從上面看它得到的直角三角形的斜邊長為5 cm,請求出這個幾何體的表面積.

查看答案和解析>>

同步練習冊答案