如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為(   )
   
A.7B.C.D.9
B
分析:作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=
解答:解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.

∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易證△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:設(shè)AF=BG=X,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).
∴CD=
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題8分)如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,
APB=60°.
求:(1)PA的長;(2)∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在半圓O中,直徑AE=10,四邊形ABCD是平行四邊形,且頂點A、B、C在半圓上,點D在直徑AE上,連接CE,若AD=8,則CE長為            .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在⊙0中,半徑R=5,AB、CD是兩條平行弦,且AB=8,CD=6,則弦AC=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙和⊙的半徑分別是12和2,圓心的坐標是(0,8),圓心的坐標是(-6,0),則兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

⊙O為△ABC的內(nèi)切圓,且AB=10,BC=11,AC=7,MN切⊙O于點G,且分別交AB, BC于點M,N,則△BMN的周長是(    )
A.10     B.11    C.12D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,⊙O的半徑為9,弦半徑,則的長度為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,在平面直角坐標系中,矩形ABCO的面積為15,邊OAOC大2.EBC的中點,以OE為直徑的⊙Gx軸于D點,過點DDFAE于點F
(1)求OAOC的長;
(2)求證:DF為⊙G的切線;
(3)小明在解答本題時,發(fā)現(xiàn)△AOE是等腰三角形.那么,直線BC上是否存在除點E以外的點P,使△AOP也是等腰三角形,如果存在,請直接寫出所有符合題意的點P坐標.

查看答案和解析>>

同步練習(xí)冊答案