我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”.如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個頂點(diǎn)引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可);
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中∠B=∠C.E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:=;
(3)在由不平行于BC的直線AD截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E.若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時,情況又將如何?寫出你的結(jié)論.(不必說明理由)
【答案】分析:(1)根據(jù)條件∠B=∠C和梯形的定義就可以畫出圖形;
(2)根據(jù)平行線的性質(zhì)就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似時間性的性質(zhì)就可以求出結(jié)論;(3)根據(jù)角平分線的性質(zhì)可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有條件就可以得出∠ABC=∠DCB,從而得出結(jié)論,當(dāng)點(diǎn)E不在四邊形內(nèi)部時分兩種情況討論就可以求出結(jié)論.
(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分線的性質(zhì)就可以得出EF=EH,通過證明三角形全等就可以得出∠3=∠4,由BE=CE就可以得出∠1=∠2,從而可以得出結(jié)論.
解答:解:(1)如圖1,過點(diǎn)D作DE∥BC交PB于點(diǎn)E,則四邊形ABCD分割成一個等腰梯形BCDE和一個三角形ADE;

(2)∵AB∥DE,
∴∠B=∠DEC,
∵AE∥DC,
∴∠AEB=∠C,
∵∠B=∠C,
∴∠B=∠AEB,
∴AB=AE.
∵在△ABE和△DEC中,

∴△ABE∽△DEC,

;

(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,
∴∠BFE=∠CHE=90°.
∵AE平分∠BAD,DE平分∠ADC,
∴EF=EG=EH,
在Rt△EFB和Rt△EHC中
,
∴Rt△EFB≌Rt△EHC(HL),
∴∠3=∠4.
∵BE=CE,
∴∠1=∠2.
∴∠1+∠3=∠2+∠4
即∠ABC=∠DCB,
∵ABCD為AD截某三角形所得,且AD不平行BC,
∴ABCD是“準(zhǔn)等腰梯形”.
當(dāng)點(diǎn)E不在四邊形ABCD的內(nèi)部時,有兩種情況:
如圖4,當(dāng)點(diǎn)E在BC邊上時,同理可以證明△EFB≌△EHC,
∴∠B=∠C,
∴ABCD是“準(zhǔn)等腰梯形”.
當(dāng)點(diǎn)E在四邊形ABCD的外部時,
四邊形ABCD不一定是“準(zhǔn)等腰梯形”.
分兩種情況:
情況一:
當(dāng)∠BPC的角平分線與線段BC的垂直平分線重合時,四邊形ABCD為“準(zhǔn)等腰梯形”;
情況二:
當(dāng)∠BPC的角平分線與線段BC的垂直平分線相交時,四邊形ABCD不是“準(zhǔn)等腰梯形”.
點(diǎn)評:本題考查了平行線的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,角平分線的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時多次運(yùn)用角平分線的性質(zhì)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安徽)我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”.如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個頂點(diǎn)引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可);
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中∠B=∠C.E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
AB
DC
=
BE
EC
;
(3)在由不平行于BC的直線AD截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E.若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時,情況又將如何?寫出你的結(jié)論.(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年安徽省高級中等學(xué)校招生考試數(shù)學(xué) 題型:044

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”.如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個頂點(diǎn)引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可).

(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時,情況又將如何?寫出你的結(jié)論(不必說明理由)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(帶解析) 題型:解答題

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個頂點(diǎn)引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可)。
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時,情況又將如何?寫出你的結(jié)論(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(解析版) 題型:解答題

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個頂點(diǎn)引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可)。

(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時,情況又將如何?寫出你的結(jié)論(不必說明理由)

 

查看答案和解析>>

同步練習(xí)冊答案