已知二次函數(shù)y=x2–kx+k–1(k>2).
(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.
(1)證明見解析;
(2)拋物線的表達(dá)式為;
(3)當(dāng)或時,x軸與相離.
當(dāng)或或時,x軸與相切.
當(dāng)或時,x軸與相交.
解析試題分析:(1)要證明二次函數(shù)的圖象與x軸都有兩個交點(diǎn),證明二次函數(shù)的判別式是正數(shù)即可解決問題;
(2)根據(jù)函數(shù)解析式求出A、B、C點(diǎn)坐標(biāo),再由,求出函數(shù)解析式;
(3)先求出當(dāng)或或時,x軸與相切,再寫出相離與相交.
試題解析:(1)∵,
又∵,
∴.
∴即.
∴拋物線y=x2–kx+k-1與x軸必有兩個交點(diǎn);
(2)∵拋物線y=x2–kx+k-1與x軸交于A、B兩點(diǎn),
∴令,有.
解得:.
∵,點(diǎn)A在點(diǎn)B的左側(cè),
∴.
∵拋物線與y軸交于點(diǎn)C,
∴.
∵在Rt中,,
∴,解得.
∴拋物線的表達(dá)式為;
(3)解:當(dāng)或時,x軸與相離.
當(dāng)或或時,x軸與相切.
當(dāng)或時,x軸與相交.
考點(diǎn):二次函數(shù)綜合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)D、E、F分別是邊AB,BC,AC的中點(diǎn),連接DE,DF,動點(diǎn)P,Q分別從點(diǎn)A、B同時出發(fā),運(yùn)動速度均為1cm/s,點(diǎn)P沿AFD的方向運(yùn)動到點(diǎn)D停止;點(diǎn)Q沿BC的方向運(yùn)動,當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也停止運(yùn)動.在運(yùn)動過程中,過點(diǎn)Q作BC的垂線交AB于點(diǎn)M,以點(diǎn)P,M,Q為頂點(diǎn)作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點(diǎn)P運(yùn)動的時間為x(s)
(1)當(dāng)點(diǎn)P運(yùn)動到點(diǎn)F時,CQ= cm;
(2)在點(diǎn)P從點(diǎn)F運(yùn)動到點(diǎn)D的過程中,某一時刻,點(diǎn)P落在MQ上,求此時BQ的長度;
(3)當(dāng)點(diǎn)P在線段FD上運(yùn)動時,求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2﹣2mx+4m﹣8(1)當(dāng)x≤2時,函數(shù)值y隨x的增大而減小,求m的取值范圍.(2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個頂點(diǎn)作該拋物線的內(nèi)接正三角形AMN(M,N兩點(diǎn)在拋物線上),請問:△AMN的面積是與m無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由.(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元.則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,矩形OABC過原點(diǎn)O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點(diǎn)D.
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)如圖,點(diǎn)P從點(diǎn)O出發(fā),以每秒個單位長度的速度沿射線OD方向移動;同時點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個單位長度的速度沿軸正方向移動.設(shè)移動時間為秒.
①當(dāng)t為何值時,△OPQ的面積等于1;
②當(dāng)t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=-(x-t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個對應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為M(2,1),且過點(diǎn)N(3,2).
(1)求這個二次函數(shù)的關(guān)系式;
(2)若一次函數(shù)y=-x-4的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,P為拋物線上的一個動點(diǎn),過點(diǎn)P作PQ∥y軸交直線AB于點(diǎn)Q,以PQ為直徑作圓交直線AB于點(diǎn)D.設(shè)點(diǎn)P的橫坐標(biāo)為n,問:當(dāng)n為何值時,線段DQ的長取得最小值?最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商人如果將進(jìn)貨價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價,減少進(jìn)貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價x定為多少元時,才能使每天所賺的利潤y 最大?并求出最大利潤。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),已知點(diǎn)坐標(biāo)為(6,0).
(1)求此拋物線的解析式;
(2)聯(lián)結(jié)AB,過點(diǎn)作線段的垂線交拋物線于點(diǎn),如果以點(diǎn)為圓心的圓與拋物線的對稱軸相切,先補(bǔ)全圖形,再判斷直線與⊙的位置關(guān)系并加以證明;
(3)已知點(diǎn)是拋物線上的一個動點(diǎn),且位于,兩點(diǎn)之間.問:當(dāng)點(diǎn)運(yùn)動到什么位置時,的面積最大?求出的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商人如果將進(jìn)貨價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價,減少進(jìn)貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價定為多少元時,才能使每天所賺的利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com