【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D、E分別在AC、BC上,且CD·BC=AC·CE,以E為圓心,DE長為半徑作圓,⊙E經(jīng)過點(diǎn)B,與AB、BC分別交于點(diǎn)F、G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,求⊙E的半徑;
(3)若Rt△ABC的內(nèi)切圓圓心為I,求⊙I的面積.
【答案】(1)證明見解析;(2)⊙E的半徑為20;(3)130π.
【解析】(1)證明△CDE∽△CAB,得∠EDC=∠A=90°,所以AC是⊙E的切線;
(2)如圖1,作輔助線,構(gòu)建矩形AHED,設(shè)⊙E的半徑為r,表示BH和EC的長,證明△BHE∽△EDC,列比例式代入r可得結(jié)論;
(3)如圖2,作輔助線,構(gòu)建直角△IME,分別求IM和ME的值,利用勾股定理可求IE的長.
(1)∵ CD·BC=AC·CE,
∴=
∵∠DCE=∠ACB.
∴△CDE∽△CAB,
∴∠EDC=∠A=90° ,
∴ED⊥AC
又∵點(diǎn)D在⊙O上,
∴AC與⊙E相切于點(diǎn)D .
(2)過點(diǎn)E作EH⊥AB,垂足為H,
∴BH=FH.
在四邊形AHED中,∠AHE=∠A=∠ADE=90°,
∴四邊形AHED為矩形,
∴ED=HA,ED∥AB,
∴∠B=∠DEC.
設(shè)⊙O的半徑為r,則EB=ED=EG=r,
∴BH=FH=r-4,EC=r+5.
在△BHE和△EDC中,
∵∠B=∠DEC,∠BHE=∠EDC,
∴△BHE∽△EDC.
∴=,即=.
∴r=20.即⊙E的半徑為20.
(3)如圖2,過I作IM⊥BC于M,過I作IH⊥AB于H,
由①得:FH=BH=r-4=20-4=16,AB=AF+2BH=4+2×16=36,
BC=2r+5=2×20+5=45,
∴AC= =27,
∵I是Rt△ABC的內(nèi)心,
∴IM=(AB+ACBC) ÷2=(36+2745) ÷2=9,
∴AH=IM=9,
∴BH=BM=36-9=27,
∴EM=27-20=7,
在Rt△IME中,由勾股定理得:IE= , .
∴⊙I的面積=π×=130π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳池普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元張,每次憑卡不再收費(fèi);
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常銷售,兩種優(yōu)惠卡僅限暑假使用,每人一次一張票不限次數(shù).
(1)分別寫出選擇普通票、銀卡消費(fèi)時(shí),所需費(fèi)用、與次數(shù)之間的函數(shù)表達(dá)式;
(2)小明打算暑假每天游泳一次,按55天計(jì)算,則選擇哪種消費(fèi)方式更合算?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王購買了一套房子,他準(zhǔn)備將地面都鋪上地磚,地面結(jié)構(gòu)如圖所示,請(qǐng)根據(jù)圖中的數(shù)據(jù)(單位:米),解答下列問題:
(1)用含x,y的代數(shù)式表示地面總面積為 平方米;
(2)若x=5,y=1,鋪地磚每平方米的平均費(fèi)用為100元,則鋪地磚的總費(fèi)用為 元;
(3)已知房屋的高度為3米,現(xiàn)需要在客廳和臥室的墻壁上貼壁紙,那么用含x的代數(shù)式表示至少需要 平方米的壁紙;如果所粘壁紙的價(jià)格是100元/平方米,那么用含x的代數(shù)式表示購買該壁紙至少需要 元.(計(jì)算時(shí)不扣除門,窗所占的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)長方形紙盒的平面展開圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空: , , ;
(2)先化簡,在求值:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意四個(gè)有理數(shù),可以組成兩個(gè)有理數(shù)對(duì)與.
我們規(guī)定:.
例如:.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(duì) ;
(2)若有理數(shù)對(duì),則 ;
(3)當(dāng)滿足等式的是整數(shù)時(shí),求整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組連續(xù)奇數(shù)按如圖方式排列,請(qǐng)你解決下列問題:
第行最后一個(gè)數(shù)字是___________,在第行第列的數(shù)字是_______________
請(qǐng)用含的代數(shù)式表示第行的第個(gè)數(shù)字和最后一個(gè)數(shù)字;
現(xiàn)用一個(gè)正方形框去圍出相鄰兩行中的個(gè)數(shù)字(例如:第行和第行的),請(qǐng)問能否在第行和第行中求出個(gè)數(shù)字的和是?若能,請(qǐng)求出這個(gè)數(shù)字;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的對(duì)稱中心,以P為圓心作圓,過P的任意直線與圓相交于點(diǎn)M,N.則線段BM,DN的大小關(guān)系是( )
A. BM>DN B. BM<DN C. BM=DN D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組(實(shí)數(shù)m是常數(shù)).
(1)若x+y=1,求實(shí)數(shù)m的值;
(2)若-1≤x-y≤5,求m的取值范圍;
(3)在(2)的條件下,化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com