【題目】某游泳池普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價600元張,每次憑卡不再收費(fèi);
②銀卡售價150元/張,每次憑卡另收10元.
暑假普通票正常銷售,兩種優(yōu)惠卡僅限暑假使用,每人一次一張票不限次數(shù).
(1)分別寫出選擇普通票、銀卡消費(fèi)時,所需費(fèi)用、與次數(shù)之間的函數(shù)表達(dá)式;
(2)小明打算暑假每天游泳一次,按55天計算,則選擇哪種消費(fèi)方式更合算?說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題背景]三邊的長分別為,求這個三角形的面積.
小輝同學(xué)在解這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中作出格點(diǎn)(即三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需要作的高,借用網(wǎng)格就能計算出的面積為_ ;
[思維拓展]我們把上述求面積的方法叫做構(gòu)圖法,若三邊的長分別為,請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應(yīng)的,并求出它的面積:
[探索創(chuàng)新]若三邊的長分別為(其中且),請利用構(gòu)圖法求出這個三角形的面積(畫出圖形并計算面積).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD中,點(diǎn)E為BC邊上任意一點(diǎn)(點(diǎn)E不與B,C重合),點(diǎn)F在線段AE上,過點(diǎn)F的直線,分別交AB、CD于點(diǎn)M、N.
(1)如圖,求證:;
(2)如圖,當(dāng)點(diǎn)F為AE中點(diǎn)時,連接正方形的對角線BD,MN與BD交于點(diǎn)G,連接BF,求證:;
(3)如圖,在(2)的條件下,若,,求BM的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
已知:如圖,在正方形ABCD中,邊.
按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個比一個小.
請解決以下問題:
(1)完成表格中的填空:
① ;② ;
③ ;④ ;
(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5 m時,求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點(diǎn)H的坐標(biāo)是(7,80);④n=7.5.
其中說法正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對自己做錯的題目進(jìn)行整理、分析、改正” (選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為_______,________ %,________%“很少”對應(yīng)扇形的圓心角為_____________;
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)若該校共有3500名學(xué)生,請你估計其中“總是”對錯題進(jìn)行整理、分析、改正的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D、E分別在AC、BC上,且CD·BC=AC·CE,以E為圓心,DE長為半徑作圓,⊙E經(jīng)過點(diǎn)B,與AB、BC分別交于點(diǎn)F、G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,求⊙E的半徑;
(3)若Rt△ABC的內(nèi)切圓圓心為I,求⊙I的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com