(2010•寶安區(qū)一模)如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數(shù).

【答案】分析:(1)在直角△ADE和直角△CDF中,AD=CD,再證明Rt△ADE≌Rt△CDF;
(2)根據(jù)△ADE≌△CDF,可得DE=DF,即可求解.
解答:(1)證明:在△ADE和△CDF,
∵四邊形ABCD是菱形,∴AD=CD,∠A=∠C,
又∵∠DFC=∠DEA=90°,
∴Rt△ADE≌Rt△CDF;

(2)解:由△ADE≌△CDF,∴DE=DF,
∴∠DEF==65°,
∴∠BEF=90°-65°=25°.
點評:本題考查了菱形的性質(zhì)及全等三角形的判斷,難度不大,關鍵熟練掌握菱形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年廣東省深圳市寶安區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)如圖1,在平面直角坐標系xOy中,已知A、B兩點的坐標分別為(4,0)、(0,2),將△OAB繞點O逆時針旋轉90°后得到△OCD,拋物線y=ax2-2ax+4經(jīng)過點A.
(1)求拋物線的函數(shù)表達式,并判斷點D是否在該拋物線上;
(2)如圖2,若點P是拋物線對稱軸上的一個動點,求使|PC-PD|的值最大時點P的坐標;
(3)設拋物線上是否存在點E,使△CDE是以CD為直角邊的直角三角形?若存在,請求出所有點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省深圳市寶安區(qū)中考數(shù)學一模試卷(解析版) 題型:選擇題

(2010•寶安區(qū)一模)如圖,已知拋物線l1:y=(x-2)2-2與x軸分別交于O、A兩點,將拋物線l1向上平移得到l2,過點A作AB⊥x軸交拋物線l2于點B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達式為( )

A.y=(x-2)2+4
B.y=(x-2)2+3
C.y=(x-2)2+2
D.y=(x-2)2+1

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省深圳市寶安區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)“佳佳商場”在銷售某種進貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.
(1)為了實現(xiàn)每天1600元的銷售利潤,“佳佳商場”應將這種商品的售價定為多少?
(2)物價局規(guī)定該商品的售價不能超過40元/件,“佳佳商場”為了獲得最大的利潤,應將該商品售價定為多少?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省深圳市寶安區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)“元旦”期間,某商場為了吸引顧客購物消費,設計了如圖所示的一個轉盤,轉盤平均分成3份.
(1)求轉動該轉盤一次所得的顏色是黃色的概率;
(2)請用列表法或畫樹狀圖的方法來說明轉動該轉盤兩次,兩次所得的顏色相同的概率.
(3)該商場設計了如下兩張獎勵方案:
方案一,轉動該轉盤一次,若轉得的顏色是黃色則可得獎;
方案二,轉動該轉盤兩次,若轉得的顏色相同則可得獎.
如果你是顧客,你選擇哪種方案比較劃算?為什么?

查看答案和解析>>

同步練習冊答案