(2010•寶安區(qū)一模)如圖1,在平面直角坐標(biāo)系xOy中,已知A、B兩點(diǎn)的坐標(biāo)分別為(4,0)、(0,2),將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△OCD,拋物線y=ax2-2ax+4經(jīng)過(guò)點(diǎn)A.
(1)求拋物線的函數(shù)表達(dá)式,并判斷點(diǎn)D是否在該拋物線上;
(2)如圖2,若點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線上是否存在點(diǎn)E,使△CDE是以CD為直角邊的直角三角形?若存在,請(qǐng)求出所有點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)將A點(diǎn)(4,0)代入解析式得出拋物線的函數(shù)表達(dá)式,并求出D點(diǎn)的坐標(biāo),并判斷點(diǎn)D是否在該拋物線上.
(2)求|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo),應(yīng)延長(zhǎng)CD交對(duì)稱軸于點(diǎn)P.因?yàn)閨PC-PD|小于或等于第三邊即CD,當(dāng)|PC-PD|等于CD時(shí),|PC-PD|的值最大.
(3)假設(shè)存在這樣一個(gè)點(diǎn)E,(x,-x2+x+4),利用勾股定理可以求出.
解答:解:(1)∵y=ax2-2ax+4經(jīng)過(guò)點(diǎn)A,
A點(diǎn)的坐標(biāo)為(4,0)
∴解析式為:y=-x2+x+4
∵△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△OCD,∴D點(diǎn)的坐標(biāo)為(-2,0)
代入y=-x2+x+4可得,D點(diǎn)在解析式上.

(2)如圖1:
∵在三角形PCD中,由兩邊之差小于第三邊,
∴|PC-PD|<CD,當(dāng)P在線段DC延長(zhǎng)線上時(shí),|PC-PD|的值最大,為CD的長(zhǎng),
過(guò)C(0,4),D(-2,0)的直線為y=2x+4,
∵當(dāng)x=1時(shí),y=2×1+4=6,
∴拋物線對(duì)稱軸交點(diǎn)為(1,6),
∴|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo)(1,6);

(3)如圖2,假設(shè)存在這樣一個(gè)點(diǎn)E,(x,-x2+x+4),使△CDE是以CD為直角邊的直角三角形,
故EF2+CF2=CE2,EG2+DG2=DE2
∴EC2+CD2=DE2
∴DE2=EF2+CF2+OC2+DO2
∴x2+[4-(-x2+x+4)]2+20=(-x2+x+4)2+(x+2)2
∴整理得:4x2-12x=0(2)
解得:x1=0(不合題意舍去),x2=3
代入(x,-x2+x+4),得(3,
∴E點(diǎn)坐標(biāo)為(3,).
∴拋物線上存在點(diǎn)E,使△CDE是以CD為直角邊的直角三角形.
如圖3,假設(shè)存在這樣一個(gè)點(diǎn)E′(x,-x2+x+4),使△CDE是以CD為直角邊的直角三角形,
作E′F⊥x軸于點(diǎn)F,E′N⊥y軸于點(diǎn)N,
故E′F2+DF2=DE′2,CN2+NE′2=CE′2,OD2+CO2=DC2,
∴CE′2=E′F2+DF2+OC2+DO2
∴x2+[4-(-x2+x+4)]2=20+(-x2+x+4)2+(x+2)2
∴整理得:x2-3x-10=0
解得:x1=-2(不合題意舍去),x2=5,
代入(x,-x2+x+4),得(5,-3.5)
∴E′點(diǎn)坐標(biāo)為(5,-3.5).
∴拋物線上存在點(diǎn)E(5,-3.5),(3,),使△CDE是以CD為直角邊的直角三角形
點(diǎn)評(píng):此題主要考查了:
(1)待定系數(shù)法求二次函數(shù)解析式,即A點(diǎn)(4,0)代入y=ax2-2ax+4,
(2)勾股定理的應(yīng)用和作對(duì)稱點(diǎn)問(wèn)題,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省深圳市寶安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2010•寶安區(qū)一模)如圖,已知拋物線l1:y=(x-2)2-2與x軸分別交于O、A兩點(diǎn),將拋物線l1向上平移得到l2,過(guò)點(diǎn)A作AB⊥x軸交拋物線l2于點(diǎn)B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達(dá)式為( )

A.y=(x-2)2+4
B.y=(x-2)2+3
C.y=(x-2)2+2
D.y=(x-2)2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省深圳市寶安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)“佳佳商場(chǎng)”在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤(rùn),“佳佳商場(chǎng)”應(yīng)將這種商品的售價(jià)定為多少?
(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,“佳佳商場(chǎng)”為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省深圳市寶安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)“元旦”期間,某商場(chǎng)為了吸引顧客購(gòu)物消費(fèi),設(shè)計(jì)了如圖所示的一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤平均分成3份.
(1)求轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次所得的顏色是黃色的概率;
(2)請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法來(lái)說(shuō)明轉(zhuǎn)動(dòng)該轉(zhuǎn)盤兩次,兩次所得的顏色相同的概率.
(3)該商場(chǎng)設(shè)計(jì)了如下兩張獎(jiǎng)勵(lì)方案:
方案一,轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,若轉(zhuǎn)得的顏色是黃色則可得獎(jiǎng);
方案二,轉(zhuǎn)動(dòng)該轉(zhuǎn)盤兩次,若轉(zhuǎn)得的顏色相同則可得獎(jiǎng).
如果你是顧客,你選擇哪種方案比較劃算?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省深圳市寶安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•寶安區(qū)一模)如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案