已知為銳角,且,則等于

A.  。拢  。茫   D.

 

【答案】

C

【解析】解:由題意得,,故選C。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ACB與△DFE是兩個(gè)全等的直角三角形,量得它們的斜邊長(zhǎng)為10cm,較小銳角為30°,將這兩個(gè)三角形擺成如圖1所示的形狀,使點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合,將圖1中的△ACB繞點(diǎn)C順時(shí)針精英家教網(wǎng)方向旋轉(zhuǎn)到圖2的位置,點(diǎn)E在AB邊上,AC交DE于點(diǎn)G,則線段FG的長(zhǎng)為
 
cm(保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽模擬)如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).

(1)如點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn).且∠ABC=60°,PA=3,PC=4,求PB的長(zhǎng).
(2)如圖(2),在銳角△ABC外側(cè)作等邊△ACB′連結(jié)BB′.求證:BB′過(guò)△ABC的費(fèi)馬點(diǎn)P,且BB′=PA+PB+PC.
(3)已知銳角△ABC,∠ACB=60°,分別以三邊為邊向形外作等邊三角形ABD,BCE,ACF,請(qǐng)找出△ABC的費(fèi)馬點(diǎn),并探究S△ABC與S△ABD的和,S△BCE與S△ACF的和是否相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,∠ACB為銳角,D是射線BC上一動(dòng)點(diǎn)(D與C不重合).以AD為一邊向右側(cè)作等邊△ADE(C與E不重合),連接CE.
(1)若△ABC為等邊三角形,當(dāng)點(diǎn)D在線段BC上時(shí),(如圖1所示),則直線BD與直線CE所夾銳角為
60
60
度;
(2)若△ABC為等邊三角形,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí)(如同2所示),你在(1)中得到的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)若△ABC不是等邊三角形,且BC>AC(如圖3所示).試探究當(dāng)點(diǎn)D在線段BC上時(shí),你在(1)中得到的結(jié)論是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)指出當(dāng)∠ACB滿足什么條件時(shí),能使(1)中的結(jié)論成立?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ACB與△DFE是兩個(gè)全等的直角三角形,量得它們的斜邊長(zhǎng)為8cm,較小銳角為30°,將這兩個(gè)三角形擺成如圖(1)所示的形狀,使點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合,將圖(1)中的△ACB繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)到圖(2)的位置,點(diǎn)E在AB邊上,AC交DE于點(diǎn)G,則線段FG的長(zhǎng)為
2
3
2
3
cm(保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ACB與△DFE是兩個(gè)全等的直角三角形,量得它們的斜邊長(zhǎng)為10cm,較小銳角為30°,將這兩個(gè)三角形擺成如圖(1)所示的形狀,使點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合,將圖(1)中的△ACB繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)到圖(2)的位置,點(diǎn)E在邊AB上,AC交DE于點(diǎn)G,則線段FG的長(zhǎng)為
5
3
2
5
3
2
cm(保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案