如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長(zhǎng)OB=m,OD=n,m>n,m、n是方程3x2+8(x-l)x2=10x(x-1)的兩個(gè)根.

(1)

求m和n;

(2)

P是OB上一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q在PB或其延長(zhǎng)線上運(yùn)動(dòng),OP=PQ,作以PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿射線OB方向運(yùn)動(dòng),設(shè)OP=x,正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與x的函數(shù)關(guān)系式,并畫出函數(shù)圖象;

(3)

已知直線l∶y=ax-a都經(jīng)過一定點(diǎn)A,求經(jīng)過定點(diǎn)A且把矩形OBCD面積平均分成兩部分的直線的解析式和A點(diǎn)的坐標(biāo).

答案:
解析:

(1)

解本題的關(guān)鍵是知道過中心對(duì)稱圖形的對(duì)稱中心的直線可把圖形分成面積相等的兩部分

(2)

解本題的關(guān)鍵是知道過中心對(duì)稱圖形的對(duì)稱中心的直線可把圖形分成面積相等的兩部分

(3)

因?yàn)榫匦蜲BCD是中心對(duì)稱圖形,且對(duì)稱中心為對(duì)角線交點(diǎn),設(shè)為M,所以經(jīng)過對(duì)稱中心M的直線可把矩形OBCD的面積平均分成面積相等的兩部分,即M點(diǎn)就是A點(diǎn),不難求出A(2,1)因?yàn)橹本y=ax-a過A(2,1)所以1=2a-a所以a=1所以y=x-1.

解本題的關(guān)鍵是知道過中心對(duì)稱圖形的對(duì)稱中心的直線可把圖形分成面積相等的兩部分.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

1.若△ABD的面積為4,求點(diǎn)B的坐標(biāo)

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

【小題1】若△ABD的面積為4,求點(diǎn)B的坐標(biāo)
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鹽城市大豐市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案