【題目】如圖,AOB是一條直線,∠AOC=60°,OD,OE分別是∠AOC和∠BOC的平分線,則圖中互補的角有( 。
A. 5對 B. 6對 C. 7對 D. 8對
【答案】D
【解析】
根據鄰補角的定義以及角平分線的定義求得圖中角的度數,然后根據互補的定義進行判斷.
∠BOC=180°﹣∠AOC=180°﹣60°=120°.
∵OD,OE分別是∠AOC和∠BOC的平分線,∴∠AOD=∠COD=30°,∠COE=∠BOE=60°,∴∠AOE=∠BOC=120°,∠DOE=90°,∠DOB=150°,則∠AOD+∠DOB=180°,∠COD+∠DOB=180°,∠AOC+∠BOC=180°,∠COE+∠BOC=180°,∠BOE+∠BOC=180°,∠AOE+∠BOE=180°,∠AOE+∠AOC=180°,∠AOE+∠COE=180°.
總之有8對互補的角.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,以OB為直徑畫圓M,過D作⊙M的切線,切點為N,分別交AC、BC于點E、F,已知AE=5,CE=3,則DF的長是( )
A.3
B.4
C.4.8
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在長方形ABCD中,點P是CD中點,點Q從點A開始,沿著A→B→C→P的路線勻速運動,設△APQ的面積是y,點Q經過的路線長度為x,圖2坐標系中折線OEFG表示y與x之間的函數關系,點E的坐標為(4,6),則點G的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家1400米處的報亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.兩人離家的距離y(米)與小明所走時間x(分鐘)之間的函數關系如圖所示,請結合圖象信息解答下列問題:
(1)小明出發(fā) 分鐘后第一次與爸爸相遇;
(2)分別求出爸爸離家的距離y1和小明到達報亭前離家的距離y2與時間x之間的函數關系式;
(3)求小明在報亭休息了多長時間遇到姍姍來遲的爸爸;
(4)若游泳館離小明家2000米,請你通過計算說明誰先到達游泳館.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩城由筆直的鐵路連接,動車甲從A向B勻速前行,同時動車乙從B向A勻速前行,到達目的地時停止,其中動車乙速度較快,設甲乙兩車相距y(km),甲行駛的時間為t(h),y關于t的函數圖象如圖所示.
(1)填空:動車甲的速度為(km/h),動車乙的速度為(km/h);
(2)求圖中點P的坐標,并解釋該點坐標所表示的實際意義;
(3)兩車何時相距1200km?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自2014年12月28日北京公交地鐵調價以來,人們的出行成本發(fā)生了較大的變化. 小林根據新聞,將地鐵和公交車的票價繪制成了如下兩個表格。(說明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他類似)
|
|
根據以上信息回答下列問題:
小林辦了一張市政交通一卡通學生卡,目前乘坐地鐵沒有折扣。
(1)如果小林全程乘坐地鐵的里程為14公里,用他的學生卡需要刷卡交費________元;
(2)如果小林全程乘坐公交車的里程為16公里,用他的學生卡需要刷卡交________元;
(3)小林用他的學生卡乘坐一段地鐵后換乘公交車,兩者累計里程為12公里。已知他乘坐地鐵平均每公里花費0.4元,乘坐公交車平均每公里花費0.25元,此次行程共花費4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】樂樂是一名健步運動的愛好者,她用手機軟件記錄了某個月(30天)每天健步走的步數(單位:萬步),并將記錄結果繪制成了如圖所示的統(tǒng)計圖(不完整).
(1)若樂樂這個月平均每天健步走的步數為1.32萬步,試求她走1.3萬步和1.5萬步的天數;
(2)求這組數據中的眾數和中位數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com