【題目】如圖所示,在同一水平面從左到右依次是大廈、別墅、小山、小彬?yàn)榱藴y(cè)得小山的高度,在大廈的樓頂B處測(cè)得山頂C的俯角∠GBC=13°,在別墅的大門A點(diǎn)處測(cè)得大廈的樓頂B點(diǎn)的仰角∠BAO=35°,山坡AC的坡度i=1:2OA=500米,則山C的垂直高度約為( )(參考數(shù)據(jù):sin13°≈0.22tan13°≈0.23,sin35°≈0.57

A. 161.0 B. 116.4 C. 106.8 D. 76.2

【答案】A

【解析】分析:分別過(guò)點(diǎn)CCMOA,CNBG,垂足為點(diǎn)M,N,構(gòu)建RtABORtACM,RtBCN,利用三角形函數(shù)的定義列方程求解.

詳解:分別過(guò)點(diǎn)CCMOACNBG,垂足為點(diǎn)MN.

RtABO中,BOOAtan35°≈0.7×500=350.

設(shè)MCx,AM=2x,所以BNOM=500+2x,CN=350-x.

RtBCN中,CNBNtan13°,350-x=0.23(500+2x),解得x≈161.0.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新華商場(chǎng)銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái).商場(chǎng)要想使這種冰箱的銷售利潤(rùn)平均每天達(dá)到5000元,設(shè)每臺(tái)冰箱的定價(jià)為x元,則x滿足的關(guān)系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AEADBD于點(diǎn)E,CFBCBD于點(diǎn)F.

1證明:ADE≌△CBF

2)連接AF、CE,四邊形AECF是菱形嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(1)班課外活動(dòng)小組利用標(biāo)桿測(cè)量學(xué)校旗桿的高度,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】青島交運(yùn)集團(tuán)出租車司機(jī)張師傅某天下午的營(yíng)運(yùn)全是在東西走向的吉林路上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?/span>單位:千米如下:,,,,,,,

(1)張師傅這天最后到達(dá)目的地時(shí),在下午出車時(shí)的出發(fā)地哪個(gè)方向距離出發(fā)地多遠(yuǎn)?

(2)張師傅這天下午共行車多少千米?

(3)若每千米耗油,則這天下午張師傅用了多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)有下列說(shuō)法:

如果當(dāng)x≤1時(shí)的增大而減小,則m1;

如果它的圖象與x軸的兩交點(diǎn)的距離是4,

如果將它的圖象向左平移3個(gè)單位后的函數(shù)的最小值是-4,m=-1;

如果當(dāng)x=1時(shí)的函數(shù)值與x=2013時(shí)的函數(shù)值相等,則當(dāng)x=2014時(shí)的函數(shù)值為-3

其中正確的說(shuō)法是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩個(gè)一次函數(shù)的圖像與軸交于同一點(diǎn),則稱這兩個(gè)函數(shù)為一對(duì)“牽手函數(shù)”,這個(gè)交點(diǎn)為“牽手點(diǎn)”.

1)一次函數(shù)軸的交點(diǎn)坐標(biāo)為________;一次函數(shù)與一次函數(shù)為一對(duì)“牽手函數(shù)”,則________

2)請(qǐng)寫出以為“牽手點(diǎn)”的一對(duì)“牽手函數(shù)”;

3)已知一對(duì)“牽手函數(shù)”:,其中,為一元二次方程的兩根,求它們的“牽手點(diǎn)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝建國(guó)七十周年,南崗區(qū)準(zhǔn)備對(duì)某道路工程進(jìn)行改造,若請(qǐng)甲工程隊(duì)單獨(dú)做此工程需4個(gè)月完成,若請(qǐng)乙工程隊(duì)單獨(dú)做此工程需6個(gè)月完成,若甲、乙兩隊(duì)合作2個(gè)月后,甲工程隊(duì)到期撤離,則乙工程隊(duì)再單獨(dú)需幾個(gè)月能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2bxc經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線l上是否存在點(diǎn)M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案