如圖,已知等腰直角三角形的直角邊長為1,以Rt△的斜邊為直角邊,畫第二個等腰直角三角形,再以Rt△的斜邊為直角邊,畫第三個等腰直角三角形,…,以此類推;

(1)第5個等腰直角三角形的斜邊長是________________;

(2)第個等腰直角三角形的斜邊長是________________;(用含的代數(shù)式表示)

 

【答案】

(1)(2)

【解析】

試題分析:先根據(jù)勾股定理依次求出各個等腰直角三角形的斜邊長,分析規(guī)律即可得到結果。

第1個等腰直角三角形的斜邊;

第2個等腰直角三角形的斜邊;

第3個等腰直角三角形的斜邊

第4個等腰直角三角形的斜邊;

(1)第5個等腰直角三角形的斜邊;

(2)第個等腰直角三角形的斜邊長是

考點:本題考查的是圖形的變化,勾股定理的應用

點評:解答本題的關鍵是觀察圖形得到每一個等腰直角三角形的斜邊長都是下一個等腰直角三角形的直角邊的長。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰Rt△ABC的直角邊長為l,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推到第五個等腰Rt△AFG,則由這五個等腰直角三角形所構成的圖形的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等腰Rt△ABC直角邊長為1,以它的斜邊AC為直角邊畫第二個等腰Rt△ACD,再以斜邊AD為直角邊畫第三個Rt△ADE…,依此類推,AC長為
2
,AD長為2,第3個等腰直角三角形斜邊AE長=
2
2
2
2
,第4個等腰三角形斜邊AF長=
4
4
,則第n個等腰直角三角形斜邊長=
2
n
2
n

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年福建晉江養(yǎng)正中學八年級上學期期中考試數(shù)學試題(帶解析) 題型:解答題

如圖,已知等腰直角三角形的直角邊長為1,以Rt△的斜邊為直角邊,畫第二個等腰直角三角形,再以Rt△的斜邊為直角邊,畫第三個等腰直角三角形,…,以此類推;

(1)第5個等腰直角三角形的斜邊長是________________;
(2)第個等腰直角三角形的斜邊長是________________;(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江寧波地八年級第一次質(zhì)量評估數(shù)學試卷(解析版) 題型:填空題

如圖,已知等腰Rt△ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推直到第五個等腰Rt△AFG,則由這五個等腰直角三角形所構成的圖形的面積為______.

 

查看答案和解析>>

同步練習冊答案