如圖(1),凸四邊形ABCD,如果點(diǎn)P滿足∠APD=∠APB=α.且∠BPC=∠CPD=β,則稱點(diǎn)P為四邊形ABCD的一個(gè)半等角點(diǎn).
1.在圖(3)正方形ABCD內(nèi)畫(huà)一個(gè)半等角點(diǎn)P,且滿足α≠β;
2.在圖(4)四邊形ABCD中畫(huà)出一個(gè)半等角點(diǎn)P,保留畫(huà)圖痕跡(不需寫(xiě)出畫(huà)法);
3.若四邊形ABCD有兩個(gè)半等角點(diǎn)P1、P2(如圖(2)),證明線段P1P2上任一點(diǎn)也是它的半等角點(diǎn).
1.所畫(huà)的點(diǎn)P在AC上且不是AC的中點(diǎn)和AC的端點(diǎn).(2分)
2.畫(huà)點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B’,延長(zhǎng)DB’交AC于點(diǎn)P,點(diǎn)P為所求(不寫(xiě)文字說(shuō)明不扣分).(3分)
3.連P1A、P1D、P1B、P1C和P2D、P2B,根據(jù)題意,
∠AP1D=∠AP1B,∠DP1C=∠BP1C,
∴∠AP1B+∠BP1C=180度.
∴P1在AC上,
同理,P2也在AC上.
在△DP1P2和△BP1P2中,
∠DP2P1=∠BP2P1,∠DP1P2=∠BP1P2,P1P2公共,
∴△DP1P2≌△BP1P2.
所以DP1=BP1,DP2=BP2,于是B、D關(guān)于AC對(duì)稱.
設(shè)P是P1P2上任一點(diǎn),連接PD、PB,由對(duì)稱性,得∠DPA=∠BPA,∠DPC=∠BPC,
所以點(diǎn)P是四邊形的半等角點(diǎn).(5分)
解析:(1)根據(jù)題意可知,所畫(huà)的點(diǎn)P在AC上且不是AC的中點(diǎn)和AC的端點(diǎn).因?yàn)樵趫D形內(nèi)部,所以不能是AC的端點(diǎn),又由于α≠β,所以不是AC的中點(diǎn).
(2)畫(huà)點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B’,延長(zhǎng)DB’交AC于點(diǎn)P,點(diǎn)P為所求.(因?yàn)閷?duì)稱的兩個(gè)圖形完全重合)
(3)先連P1A、P1D、P1B、P1C和P2D、P2B,根據(jù)題意∠AP1D=∠AP1B,∠DP1C=∠BP1C∴∠AP1B+∠BP1C=180度.∴P1在AC上,同理,P2也在AC上,再利用ASA證明△DP1P2≌△BP1P2而,那么△P1DP2和△P1BP2關(guān)于P1P2對(duì)稱,P是對(duì)稱軸上的點(diǎn),所以∠DPA=∠BPA,∠DPC=∠BPC.即點(diǎn)P是四邊形的半等角點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com