【題目】將正方形ABCD和正方形BEFG如圖(一)所示放置,已知AB5,BE6,將正方形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一定的角度α0°≤α360°)到圖(二)所示:連接AE,CG

1)求線段AECG的關(guān)系,并給出證明

2)當(dāng)旋轉(zhuǎn)至某一個(gè)角度時(shí),點(diǎn)C,E,G在同一條直線上,請(qǐng)畫(huà)出示意圖形,并求出此時(shí)AE的長(zhǎng)

【答案】1AECG,證明詳見(jiàn)解析;(2AE

【解析】

1)由旋轉(zhuǎn)中對(duì)應(yīng)邊和對(duì)應(yīng)角相等,可證ABE≌△CBG,可得AECG

2)畫(huà)圖可知,點(diǎn)C、E、G在同一條直線上存在兩種情況,根據(jù)(1)的全等證明,可知AECG,利用CG所在三角形利用勾股定理求出CH,加上HG可得CG長(zhǎng)度即AE的長(zhǎng).

解:(1AEAG

ABCB,ABECBG,BEBG

∴△ABE≌△CBGSAS

AECG

2)當(dāng)ECG線段上時(shí),如圖所示

由(1)可知ABE≌△CBG

AECG

Rt△CBH

BC,BHEH

CH

CE

CG

AE

當(dāng)點(diǎn)ECG的延長(zhǎng)線上時(shí),如圖所示

由(1)可知ABE≌△CBG

AECG

Rt△BHC

BHHG,BC

CH

CG

AE

AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)銷(xiāo)售某種冰箱,該種冰箱每臺(tái)進(jìn)價(jià)為2500元.已知原銷(xiāo)售價(jià)為每臺(tái)2900元時(shí),平均每天能售出8臺(tái).若在原銷(xiāo)售價(jià)的基礎(chǔ)上每臺(tái)降價(jià)50元,則平均每天可多售出4臺(tái).設(shè)每臺(tái)冰箱的實(shí)際售價(jià)比原銷(xiāo)售價(jià)降低了x元.

1)填表(不需化簡(jiǎn)):


每天的銷(xiāo)售量/臺(tái)

每臺(tái)銷(xiāo)售利潤(rùn)/

降價(jià)前

8

400

降價(jià)后



2)商場(chǎng)為使這種冰箱平均每天的銷(xiāo)售利潤(rùn)達(dá)到5000元,則每臺(tái)冰箱的實(shí)際售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1、圖2、圖3,在中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,當(dāng)時(shí),我們稱(chēng)的“旋補(bǔ)三角形”,上的中線叫做的“旋補(bǔ)中線”,點(diǎn)叫做“旋補(bǔ)中心”.圖1、圖2、圖3中的均是的“旋補(bǔ)三角形”.

1)①如圖2,當(dāng)為等邊三角形時(shí),“旋補(bǔ)中線”的數(shù)量關(guān)系為:______;

②如圖3,當(dāng)時(shí),則“旋補(bǔ)中線”長(zhǎng)為______.

2)在圖1中,當(dāng)為任意三角形時(shí),猜想“旋補(bǔ)中線”的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB12m,拱高CD4m.

1)求拱橋的半徑;

2)有一艘寬為5m的貨船,船艙頂部為長(zhǎng)方形,并高出水面3.4m,則此貨船是否能順利通過(guò)此圓弧形拱橋,并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.

(1)以隧道橫斷面拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱(chēng)軸為y軸,建立直角坐標(biāo)系,求該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)某卡車(chē)空車(chē)時(shí)能通過(guò)此隧道,現(xiàn)裝載一集裝箱箱寬3m,車(chē)與箱共高4.5m,此車(chē)能否通過(guò)隧道?并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.

求:(1)∠C的度數(shù);

2AC兩港之間的距離為多少km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一張平行四邊形紙片ABCD,要求利用所學(xué)知識(shí)作出一個(gè)菱形,甲、乙兩位同學(xué)的作法分別如下:

甲:連接AC,作AC的中垂線交ADBCE、F,則四邊形AFCE是菱形.

乙:分別作的平分線AEBF,分別交BC于點(diǎn)E,交AD于點(diǎn)F,則四邊形ABEF是菱形.

對(duì)于甲、乙兩人的作法,可判斷( )

A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確

C.甲、乙均正確D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大數(shù)學(xué)家歐拉非常推崇觀察能力,他說(shuō)過(guò),今天已知的許多數(shù)的性質(zhì),大部分是通過(guò)觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家化歸就是將面臨的新問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問(wèn)題的數(shù)學(xué)方法,這是一種具有普遍適用性的數(shù)學(xué)思想方法如多項(xiàng)式除以多項(xiàng)式可以類(lèi)比于多位數(shù)的除法進(jìn)行計(jì)算:

請(qǐng)用以上方法解決下列問(wèn)題:

1)計(jì)算:;

2)若關(guān)于x的多項(xiàng)式能被二項(xiàng)式整除,且ab均為自然數(shù),求滿足以上條件的a,b的值及相應(yīng)的商.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 DE 兩點(diǎn),的長(zhǎng)為(

A.B.C.πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案