【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元.已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎(chǔ)上每臺降價50元,則平均每天可多售出4臺.設(shè)每臺冰箱的實際售價比原銷售價降低了x元.
(1)填表(不需化簡):
每天的銷售量/臺 | 每臺銷售利潤/元 | |
降價前 | 8 | 400 |
降價后 |
(2)商場為使這種冰箱平均每天的銷售利潤達到5000元,則每臺冰箱的實際售價應(yīng)定為多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點D、F分別在邊AC、BC上,易證:AD=BF(不需要證明);
探究:將圖①的正方形CDEF繞點C順時針旋轉(zhuǎn)α(0°<α<90°),連接AD、BF,其他條件不變,如圖②,求證:AD=BF;
應(yīng)用:若α=45°,CD=,BE=1,如圖③,則BF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點P是線段AB上的動點(不與A、B重合),過點P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點C.
(1)求a、b的值及B點的坐標(biāo);
(2)求線段PC長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,求∠AOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點D,DE⊥AB,垂足為E。若DE=1,則BC的長為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)直接寫出點C,D的坐標(biāo),求出四邊形ABDC的面積;
(2)在x軸上是否存在一點F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點,,分別在邊,,上,且,,連結(jié),,,
(1)求證:.
(2)判斷的形狀,并說明理由.
(3)若,當(dāng)_______時,.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.
計時制:0.05元/分;
包月制:50元/月(限一部個人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費0.02元/分.
(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應(yīng)該支付的費用.
(2)若某用戶估計一個月內(nèi)上網(wǎng)的時間為20小時,你認(rèn)為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上,數(shù)學(xué)老師提出了如下問題:
如圖1,若線段AD為△ABC的角平分線,請問一定成立嗎?
小明和小芳分別作了如下探究:
小明發(fā)現(xiàn):如圖2,當(dāng)△ABC為直角三角形時,且∠C=90°,∠CAB=60°時,結(jié)論成立;
小芳發(fā)現(xiàn):如圖3,當(dāng)△ABC為任意三角形時,過點C作AB的平行線,交AD的延長線于點E,利用此圖可以證明成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com