【題目】如圖,菱形ABCD中,DE⊥AB,垂足為點E,連接CE.若AE=2,∠DCE=30°,則菱形的邊長為________.
【答案】
【解析】
由四邊形ABCD為菱形性質(zhì)得DC∥AB,則同旁內(nèi)角互補,得∠CDE+∠DEB=180°,
結(jié)合DE⊥AB,則DE⊥DC,已知∠DCE=30°,設(shè)DE=x, 用勾股定理把DC、AD、和DE用含x的代數(shù)式表示,在Rt△AED中,利用勾股列關(guān)系式求得x=, 則.
解:∵四邊形ABCD為菱形,
∴DC∥AB,
∴∠CDE+∠DEB=180°,
∵DE⊥AB,
∴DE⊥DC,
∵∠DCE=30°,
設(shè)DE=x, 則EC=2x,
,
∴AD=DC=,
在Rt△AED中,有AD2=DE2+AE2 ,
解得x=,
,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.
(1)求每臺型、型凈水器的進價各是多少元;
(2)槐蔭公司計劃購進、兩種型號的凈水器共50臺進行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時型凈水器每臺售價2500元,型凈水器每臺售價2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺凈水器并捐獻扶貧資金后獲得的利潤為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;
如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC,BD相交于點O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.
(1)證明:AD∥BC;
(2)求∠EAD的度數(shù);
(3)求證:∠AOB=∠DAC +∠CBD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你閱讀下列解題過程,并回答所提出的問題.
計算:
解:原式= 、
= ②
=x-3-3(x+1) ③
=-2x-6 ④
(1)上述計算過程中,從哪一步開始出現(xiàn)錯誤______;
(2)從②到③是否正確?__________,若不正確,錯誤的原因是______________;
(3)請你給出正確答案__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1、圖2是兩張大小完全相同的6×6方格紙,每個小方格的頂點叫做格點,以格點為頂點的多邊形叫做格點多邊形.網(wǎng)格中有一個邊長為2的格點正方形,按下列要求畫出拼圖后的格點平行四邊形(用陰影表示)
(1)把圖1中的格點正方形分割成兩部分,再通過圖形變換拼成一個平行四邊形,在圖1中畫出這個格點平行四邊形;
(2)把圖2中的格點正方形分割成三部分,再通過圖形變換拼成一個平行四邊形,在圖2中畫出這個格點平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分線CF,點E從點B沿著射線BA以每秒2個單位的速度運動,過點E作BC的平行線交CF于點F.
(1)求證:四邊形BCFE是平行四邊形;
(2)當點E是邊AB的中點時,連接AF,試判斷四邊形AECF的形狀,并說明理由;
(3)設(shè)運動時間為t秒,是否存在t的值,使得以△EFC的其中兩邊為鄰邊所構(gòu)造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請直接寫出t的值.答:t=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)(x<0)與y=ax+b的圖象交于點A(﹣1,n)和點B(﹣2,1).
(1)求k,a,b的值;
(2)直線x=m與(x<0)的圖象交于點P,與y=﹣x+1的圖象交于點Q,當∠PAQ>90°時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A,B在x軸上,且關(guān)于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點E,F(xiàn),若S△BEF=7,k1+3k2=0,則k1等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com