已知tanα=數(shù)學(xué)公式,其中a、b為常數(shù),且a2+b2≠0,則(a2+b2)sinαcosα-abcos2α的值為________.

0
分析:先把tanα=化為a2+b2==的形式,再代入(a2+b2)sinαcosα-abcos2α進(jìn)行計(jì)算即可.
解答:∵tanα==,
∴a2+b2==,
代入原式得,
原式=sinαcosα-abcos2α=abcos2α-abcos2α=0.
點(diǎn)評(píng):本題考查的是三角函數(shù)的商數(shù)關(guān)系,將a2+b2轉(zhuǎn)化為是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=
k
x
(k≠0)相精英家教網(wǎng)交于A、D兩點(diǎn).其中D點(diǎn)的縱坐標(biāo)為-4,直線y=ax+b與y軸相交于B點(diǎn),作AC⊥y軸于點(diǎn)C,已知tan∠ABO=
1
2
,OB=OC=2.
(1)求A點(diǎn)的坐標(biāo)及反比例函數(shù)的解析式;
(2)求直線AB的解析式;
(3)連接OA、OD,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知tanα=
4
3
,那么sinα=
4
5
4
5
.(其中α為銳角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年吉林省中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=(k≠0)相交于A、D兩點(diǎn).其中D點(diǎn)的縱坐標(biāo)為-4,直線y=ax+b與y軸相交于B點(diǎn),作AC⊥y軸于點(diǎn)C,已知tan∠ABO=,OB=OC=2.
(1)求A點(diǎn)的坐標(biāo)及反比例函數(shù)的解析式;
(2)求直線AB的解析式;
(3)連接OA、OD,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年四川省阿壩州中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=(k≠0)相交于A、D兩點(diǎn).其中D點(diǎn)的縱坐標(biāo)為-4,直線y=ax+b與y軸相交于B點(diǎn),作AC⊥y軸于點(diǎn)C,已知tan∠ABO=,OB=OC=2.
(1)求A點(diǎn)的坐標(biāo)及反比例函數(shù)的解析式;
(2)求直線AB的解析式;
(3)連接OA、OD,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市一中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=(k≠0)相交于A、D兩點(diǎn).其中D點(diǎn)的縱坐標(biāo)為-4,直線y=ax+b與y軸相交于B點(diǎn),作AC⊥y軸于點(diǎn)C,已知tan∠ABO=,OB=OC=2.
(1)求A點(diǎn)的坐標(biāo)及反比例函數(shù)的解析式;
(2)求直線AB的解析式;
(3)連接OA、OD,求△AOD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案