【題目】如圖,⊙A過OBCD的三頂點O、D、C,邊OB與⊙A相切于點O,邊BC與⊙O相交于點H,射線OA交邊CD于點E,交⊙A于點F,點P在射線OA上,且∠PCD=2∠DOF,以O(shè)為原點,OP所在的直線為x軸建立平面直角坐標(biāo)系,點B的坐標(biāo)為(0,﹣2).
(1)若∠BOH=30°,求點H的坐標(biāo);
(2)求證:直線PC是⊙A的切線;
(3)若OD=,求⊙A的半徑.
【答案】(1)(1,﹣);(2)詳見解析;(3).
【解析】
(1)先判斷出OH=OB=2,利用三角函數(shù)求出MH,OM,即可得出結(jié)論;
(2)先判斷出∠PCD=∠DAE,進(jìn)而判斷出∠PCD=∠CAE,即可得出結(jié)論;
(3)先求出OE═3,進(jìn)而用勾股定理建立方程,r2-(3-r)2=1,即可得出結(jié)論.
(1)解:如圖,過點H作HM⊥y軸,垂足為M.
∵四邊形OBCD是平行四邊形,
∴∠B=∠ODC
∵四邊形OHCD是圓內(nèi)接四邊形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在Rt△OMH中,
∵∠BOH=30°,
∴MH=OH=1,OM=MH=,
∴點H的坐標(biāo)為(1,﹣),
(2)連接AC.
∵OA=AD,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF,
∴∠PCD=∠DAE
∵OB與⊙O相切于點A
∴OB⊥OF
∵OB∥CD
∴CD⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°
∴直線PC是⊙A的切線;
(3)解:⊙O的半徑為r.
在Rt△OED中,DE=CD=OB=1,OD= ,
∴OE═3
∵OA=AD=r,AE=3﹣r.
在Rt△DEA中,根據(jù)勾股定理得,r2﹣(3﹣r)2=1
解得r=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達(dá)式;
(2)求出四邊形ABPC的面積最大時的P點坐標(biāo)和四邊形ABPC的最大面積;
(3)在直線BC找一點Q,使得△QOC為等腰三角形,寫出Q點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設(shè)排球的個數(shù)為m,總費用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的三個頂點在邊長為1的正方形網(wǎng)格中,已知,,.
(1)畫出關(guān)于軸對稱的(其中,,分別是,,的對應(yīng)點,不寫畫法);
(2)分別寫出,,三點的坐標(biāo).
(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)現(xiàn)有學(xué)生2650人,學(xué)校為了進(jìn)一步了解學(xué)生課余生活,組織調(diào)查各興趣小組活動情況,為此校學(xué)生會進(jìn)行了一次隨機抽樣調(diào)查,根據(jù)采集到的數(shù)據(jù),繪制如下兩個統(tǒng)計圖(不完整)
請你根據(jù)兩個統(tǒng)計圖中提供的信息,解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請將條形統(tǒng)計圖中的“體育”部分的圖形補充完整;
(2)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分?jǐn)?shù)是多少?估計該中學(xué)現(xiàn)有的學(xué)生中,愛好“書畫”的人數(shù);
(3)求愛好“音樂”的人數(shù)對應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(x為任意實數(shù))經(jīng)過下圖中兩點M(1,﹣2)、N(m,0),其中M為拋物線的頂點,N為定點.下列結(jié)論:
①若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;
②當(dāng)x<m時,函數(shù)值y隨自變量x的減小而減。
③a>0,b<0,c>0.
④垂直于y軸的直線與拋物線交于C、D兩點,其C、D兩點的橫坐標(biāo)分別為s、,則s+t=2.
其中正確的是( )
A. ①② B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲乙兩人以相同的路線前往距離單位的培訓(xùn)中心參加學(xué)習(xí),圖中,分別表示甲乙兩人前往目的地所走的路程(千米)隨時間(分)變化的函數(shù)圖象,以下說法:
①乙比甲提前12分鐘到達(dá)
②甲平均速度為0.25千米/小時
③甲、乙相遇時,乙走了6千米
④乙出發(fā)6分鐘后追上甲,其中正確的是( )
A.①②B.③④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見錯誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的初三(1)班、(2)班進(jìn)行了檢測,如圖表示從兩班各隨機抽取的10名學(xué)生的得分情況.
(1)利用圖中提供的信息,補全下表:
班級 | 平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 |
初三(1)班 | __________ | 24 | ________ |
初三(2)班 | 24 | _________ | 21 |
(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各40名學(xué)生,請估計兩班各有多少名學(xué)生成績優(yōu)秀;
(3)觀察上圖的數(shù)據(jù)分布情況,請通過計算說明哪個班的學(xué)生糾錯的得分更穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com