如圖所示,在?ABCD中,AC⊥BC,AC=BC=2,動點P從點A出發(fā)沿AC向終點C移動,過點P分別作PM∥AB,PN∥AD,連結AM,設AP=x,△AMP的面積為y.
(1)四邊形PMCN是不是菱形,請說明理由.
(2)寫出y與x之間的函數(shù)關系式.
分析:(1)首先得出四邊形PMCN是平行四邊形,進而利用直角三角形的性質得出PM>MC,即可得出四邊形PMCN不可能是菱形;
(2)利用CA=CB=2,∠ACB=90°,得出∠CAB=∠CBA=45°,進而求出CP=CM,則AP=BM=x,MC=BC-BM=2-x,再利用三角形面積求法得出y與x之間的函數(shù)關系式.
解答:解:(1)四邊形PMCN不可能是菱形,
理由:∵PM∥AB,
∴PM∥CN,
同理可得:PN∥MC,
∴四邊形PMCN是平行四邊形,
∵AC⊥BC,
∴△PCM為直角三角形,
∴PM>MC,
∴四邊形PMCN不可能是菱形;

(2)在△ACB中,
∵CA=CB=2,∠ACB=90°,
∴∠CAB=∠CBA=45°,
又∵PM∥AB,
∴∠CPM=∠CMP=45°,
∴CP=CM,
∴AP=BM=x,
∴MC=BC-BM=2-x,
S△AMP=
1
2
AP×MC=
1
2
x×(2-x),
∴y與x之間的函數(shù)關系式為:y=-
1
2
x2+x.
點評:此題主要考查了菱形的判定以及平行四邊形的性質和三角形面積求法和等腰三角形的性質等知識,得出AP=BM是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案