【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求證:△BCE≌△DCF;
(2)若AB=15,AD=7,求BE的長.
【答案】(1)見解析;(2)BE=4.
【解析】
(1)由角平分線定理可得CE=CF,利用HL即可判定Rt△BCE≌Rt△DCF;
(2)首先利用HL證明Rt△AEC≌Rt△AFC,得到AE=AF,然后由Rt△BCE≌Rt△DCF得BE=DF,最后根據(jù)AE+BE=AF+BE=AD+2BE即可得出答案.
證明:(1)∵AC平分∠BAD,CE⊥AB于點E,CF⊥AD于點F,
∴CE=CF,∠CEB=∠CFD=90°,
即△CBE和△CFD,△ACE和△ACF都是直角三角形.
在Rt△BCE和Rt△DCF中,
∵CE=CF,BC=CD,
∴Rt△BCE≌Rt△DCF(HL).
(2)在Rt△AEC和Rt△AFC中,
∵AC=AC,CE=CF,
∴Rt△AEC≌Rt△AFC(HL),
∴AE=AF.
由(1)知,Rt△BCE≌Rt△DCF,
∴BE=DF.
∵AB=15,AD=7,
∴AE+BE=15=AF+BE,
∴AD+DF+BE=15,
∴2BE=15-7=8,
∴BE=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,A(-1,5)、B(-1,0)、C(-4,3)
(1)直接寫出△ABC的面積為_________
(2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1
(3)若△DAB與△CAB全等(D點不與C點重合),則點D的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點O為原點的直角坐標系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點B,點C在第二象限內(nèi)且為直線AB上一點,OC=AB,反比例函數(shù)y=的圖象經(jīng)過點C,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園要建造一個圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個噴頭向外噴水.連噴頭在內(nèi),柱高為1m.水流在各個方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設(shè)計圖紙已知:在圖(2)中所示直角坐標系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計其他因素,那么水池的半徑至少為多少時,才能使噴出的水流都落在水池內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,己知,,點在邊上沿到的方向以每秒的速度運動(不與點,重合),點在上,且滿足,設(shè)點運動時間為秒,當(dāng)是等腰三角形時,________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在長度為1個單位的小正方形組成的網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;
(2)△ABC的面積為________;
(3)在直線l上找一點P,使PB+PC的長最短,則這個最短長度為________個單位長度.(在圖形中標出點P)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對任意一個正整數(shù)n都可以進行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因為12-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一個正整數(shù)是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1
(2)如果一個兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E,CE=1,延長CE、BA交于點F.
(1)求證:△ADB≌△AFC;
(2)求BD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com