【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.
【答案】(1)證明見解析(2)證明見解析
【解析】
(1)由BC⊥AF可得∠A+∠B=90°,又因為∠A+∠1=90°,根據(jù)同角的余角相等可證∠B=∠1,從而AB∥DE.
(2)分①點P在A,D之間時,②當點P在C,D之間時,③點P在C,F之間時三種情況,分別過P作PG∥AB,根據(jù)平行線的性質(zhì)求解即可.
(1)如圖1,∵BC⊥AF于點C,
∴∠A+∠B=90°,
又∵∠A+∠1=90°,
∴∠B=∠1,
∴AB∥DE.
(2)如圖2,當點P在A,D之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;
如圖所示,當點P在C,D之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;
如圖所示,當點P在C,F(xiàn)之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.
科目:初中數(shù)學 來源: 題型:
【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學生,請估計全校選擇體育類的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.
(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;
(2)若射線OD是射線OB的反向延長線,則射線OD表示的方向是 ;
(3)∠BOD可以看作是由OB繞點O逆時針方向旋轉(zhuǎn)至OD形成的角,作∠BOD的平分線OE;
(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明有5張寫著不同數(shù)的卡片,請你分別按要求抽出卡片,寫出符合要求的算式:
(1)從中取出2張卡片,使這2張卡片上的數(shù)的乘積最大;
(2)從中取出2張卡片,使這2張卡片上的數(shù)相除的商最小;
(3)從中取出2張卡片,使這2張卡片上的數(shù)通過有理數(shù)的運算后得到的結(jié)果最大;
(4)從中取出4張卡片,使這4張卡片通過有理數(shù)的運算后得到的結(jié)果為24.(寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個四邊形花壇ABCD,被兩條線段MN,EF分成四個部分,分別種上紅、黃、紫、白四種花卉,種植面積依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,則有( )
A. S1=S4 B. S1+S4=S2+S3 C. S1S4=S2S3 D. 都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強水壩強度,降壩底從A處后水平延伸到F處,使新的背水坡角∠F=45°,求AF的長度(結(jié)果精確到1米,參考數(shù)據(jù): 1.414, ≈1.732).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com