【題目】如圖,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以2cm/s的速度移動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以4cm/s的速度移動(dòng).如果P,Q兩點(diǎn)同時(shí)出發(fā).
(1)經(jīng)過幾秒,△PCQ的面積為32cm2?
(2)若設(shè)△PCQ的面積為S,運(yùn)動(dòng)時(shí)間為t,請(qǐng)寫出當(dāng)t為何值時(shí),S最大,并求出最大值;
(3)當(dāng)t為何值時(shí),以P,C,Q為頂點(diǎn)的三角形與△ABC相似?
【答案】(1) 2秒或4秒;(2) t=3時(shí),S的最大值為36cm2;(3) t=3或1.2.
【解析】
(1)根據(jù)三角形的面積公式列出方程,解方程得到答案;
(2)根據(jù)三角形的面積公式列出函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)解答;
(3)分△PCQ∽△ACB和△PCQ∽△BCA兩種情況,根據(jù)相似三角形的性質(zhì)計(jì)算即可.
解:(1)設(shè)經(jīng)過x秒,△PCQ的面積為32cm2.
由題意得,PC=12﹣2t,CQ=4t,
則(12﹣2t)×4t=32
解得:x1=2,x2=4,
答:經(jīng)過2秒或4秒,△PCQ的面積為32cm2;
(2)∵出發(fā)時(shí)間為t,點(diǎn)P的速度為2cm/s,點(diǎn)Q的速度為4cm/s,
∴PC=12﹣2t,CQ=4t
∴S=PCCQ=(12﹣2t)×4t=﹣4t2+24t,
S=﹣4t2+24t=﹣4(t﹣3)2+36
則t=3時(shí),S的最大值為36cm2;
(3)當(dāng)△PCQ∽△ACB時(shí),
=,即,=
解得,t=3,
當(dāng)△PCQ∽△BCA時(shí),
=,即,=
解得,t=1.2,
綜上所述,當(dāng)t=3或1.2時(shí),以P,C,Q為頂點(diǎn)的三角形與△ABC相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“足球進(jìn)校園”的號(hào)召,我縣教體局在今年 11 月份組織了“縣長(zhǎng)杯”校園足球比賽.在某場(chǎng)比賽中,一個(gè)球被從地面向上踢出,它距地面的高度 h(m)可用公式 h=﹣5t2+v0t 表示,其中 t(s)表示足球被踢出后經(jīng)過的時(shí)間,v0(m/s)是足球被踢出時(shí)的速度,如果足球的最大高度到 20m,那么足球被踢出時(shí)的速度應(yīng)達(dá)到________m/s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,cosB.如果⊙O的半徑為cm,且經(jīng)過點(diǎn)B、C,那么線段AO=____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求證:無論m取何值時(shí),方程總有實(shí)數(shù)根;
(2)若等腰三角形腰長(zhǎng)為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,C是的中點(diǎn),聯(lián)結(jié)OA,AC,如果∠OAB=20°,那么∠CAB的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊,當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊(duì)合作20天可完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用30天完成此項(xiàng)工程.
(1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?
(2)若甲工程隊(duì)獨(dú)做a天后,再由甲、乙兩工程隊(duì)合作 天(用含a的代數(shù)式表示)可完成此項(xiàng)工程;
(3)如果甲工程隊(duì)施工每天需付施工費(fèi)1萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬(wàn)元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過64萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 頂點(diǎn) A(2,3).若以原點(diǎn) O 為位似中心,畫三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標(biāo)為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com