【題目】如圖,拋物線y=ax2+2x﹣3a經(jīng)過(guò)A(1,0)、B(b,0)、C(0,c)三點(diǎn).

(1)求b,c的值;

(2)在拋物對(duì)稱軸上找一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)b=﹣3;(2)P(﹣1,﹣2);(3)存在點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形.符合條件的點(diǎn)N的坐標(biāo)為(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).

【解析】

(1)先把A(1,0)代入拋物線y=ax2+2x﹣3a,求出a的值,然后再分別把Bb,0)、C(0,c的值代入即可求出b,c的值;

(2)根據(jù)軸對(duì)稱的性質(zhì)找出點(diǎn)P的位置,然后求出直線BC的解析式和對(duì)稱軸方程,二者聯(lián)立可求出點(diǎn)P的坐標(biāo);

(3)分當(dāng)點(diǎn)Nx軸下方時(shí)和當(dāng)點(diǎn)Nx軸上方時(shí)兩種情況求解即可.

解:(1)把A(1,0)代入拋物線y=ax2+2x﹣3a,

可得:a+2﹣3a=0

解得a=1.

拋物線的解析式為:y=x2+2x﹣3;

把B(b,0),C(0,c)代入y=x2+2x﹣3,

可得:b=1或b=﹣3,c=﹣3,

∵A(1,0),

∴b=﹣3;

(2)∵拋物線的解析式為:y=x2+2x﹣3,

其對(duì)稱軸為直線x=﹣=﹣1,

連接BC,如圖1所示,

∵B(﹣3,0),C(0,﹣3),

設(shè)直線BC的解析式為y=kx+b(k≠0),

解得,

直線BC的解析式為y=﹣x﹣3,

當(dāng)x=﹣1時(shí),y=1﹣3=﹣2,

∴P(﹣1,﹣2);

(3)存在點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形.

如圖2所示,

當(dāng)點(diǎn)N在x軸下方時(shí),

拋物線的對(duì)稱軸為直線x=﹣1,C(0,﹣3),

∴N1(﹣2,﹣3);

當(dāng)點(diǎn)N在x軸上方時(shí),

如圖2,過(guò)點(diǎn)N'作N'Dx軸于點(diǎn)D,

AN'D與M'CO中,

∴△AN'D≌△M'CO(AAS),

N'D=OC=3,即N'點(diǎn)的縱坐標(biāo)為 3.

∴3=x2+2x﹣3,

解得x=﹣1+或x=﹣1﹣,

∴N'(﹣1+,3),N“(﹣1﹣,3).

綜上所述,符合條件的點(diǎn)N的坐標(biāo)為(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人分別從AB兩地同時(shí)出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達(dá)B地后,乙繼續(xù)前行.設(shè)出發(fā)x h后,兩人相距y km,圖中折線表示從兩人出發(fā)至乙到達(dá)A地的過(guò)程中yx之間的函數(shù)關(guān)系.

根據(jù)圖中信息,求:

1)點(diǎn)Q的坐標(biāo),并說(shuō)明它的實(shí)際意義;

2)甲、乙兩人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果超市用5000元購(gòu)進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購(gòu)進(jìn)該品種蘋果,但這次的進(jìn)貨價(jià)比試銷時(shí)每千克多了0.2元,購(gòu)進(jìn)蘋果數(shù)量是試銷的2倍.

1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?

2)如果超市將該品種蘋果按每千克5元的定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天,小明來(lái)到體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還在家里,此時(shí)離比賽開始還有25分鐘,于是立即步行回家取票.同時(shí),他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.下圖中線段分別表示父、子倆送票、取票過(guò)程中,離體育館的路程(米)與所用時(shí)間(分鐘)之間的函數(shù)關(guān)系,結(jié)合圖象解答下列問(wèn)題(假設(shè)騎自行車和步行的速度始終保持不變):

1】求點(diǎn)的坐標(biāo)和所在直線的函數(shù)關(guān)系式

2】小明能否在比賽開始前到達(dá)體育館

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探究與證明)

在正方形ABCD中,G是射線AC上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),連BG,作BHBG,且使BHBG,連GH、CH

1)若GAC上(如圖1),則:①圖中與△ABG全等的三角形是   

②線段AG、CG、GH之間的數(shù)量關(guān)系是   

2)若GAC的延長(zhǎng)線上(如圖2),那么線段AG、CGBG之間有怎樣的數(shù)量關(guān)系?寫出結(jié)論并給出證明;

(應(yīng)用)(3)如圖3G在正方形ABCD的對(duì)角線CA的延長(zhǎng)線上,以BG為邊作正方形BGMN,若AG2,AD4,請(qǐng)直接寫出正方形BGMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】題目:如圖①,在四邊形ABCD中,ABAD,∠ABC=∠ADC,那么BCCD嗎?請(qǐng)說(shuō)明理由.

小明的作法如下:

如圖②,連結(jié)AC.

ABAD,∠ABC=∠ADC,ACAC.

ABC≌△ADC.

BCCD.

1)小明的作法錯(cuò)誤的原因是 .

2)請(qǐng)正確解答這道題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+b的圖象與x軸交于點(diǎn)A(2,0),與反比例函數(shù)y=的圖象交于點(diǎn)B(3,n).

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)Px軸上的點(diǎn),且PAB的面積是2,則點(diǎn)P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長(zhǎng)為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問(wèn)船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點(diǎn)同時(shí)出發(fā),A車到達(dá)終點(diǎn)時(shí),B車離終點(diǎn)還差12米,A車的平均速度為2.5/秒.

1)求B車的平均速度;

2)如果兩車重新比賽,A車從起點(diǎn)退后12米,兩車能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車的平均速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案