將圖1圍成圖2的正方體,則圖1中的紅心“
精英家教網(wǎng)
”標(biāo)志所在的正方形是正方體中的( 。

精英家教網(wǎng)
A.面CDHEB.面BCEFC.面ABFGD.面ADHG
由圖1中的紅心“
精英家教網(wǎng)
”標(biāo)志,
可知它與等邊三角形相鄰,折疊成正方體是正方體中的面CDHE.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,已知A(0,2),B(1,0)將△AOB繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DEB.以A為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)E.
(1)求拋物線的解析式;
(2)在Y軸右側(cè)拋物線上是否存在點(diǎn)P,使得以點(diǎn)P、O、E、D為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)△DEB的外心為M,將拋物線沿X軸正方向以每秒1個(gè)單位的速度向右平移,直接寫精英家教網(wǎng)出M在拋物線內(nèi)部(指拋物線與X軸所圍成的部分)時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)系中放置一個(gè)邊長(zhǎng)為1的正方形ABCD,將正方形ABCD沿x軸的正方向無(wú)滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線與x軸圍成的面積為
π+1
π+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖州)如圖1,已知菱形ABCD的邊長(zhǎng)為2
3
,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(-
3
,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<
3

①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)如圖所示,在直角坐標(biāo)系中放置一個(gè)邊長(zhǎng)為1的正方形ABCD,將正方形ABCD沿x軸的正方向無(wú)滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線與x軸圍成的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,正方形PABC的邊長(zhǎng)為1,將其沿x軸的正方向連續(xù)滾動(dòng),即先以頂點(diǎn)A為旋轉(zhuǎn)中心將正方形PABC順時(shí)針旋轉(zhuǎn)90°得到第二個(gè)正方形,再以頂點(diǎn)D為旋轉(zhuǎn)中心將第二個(gè)正方形順時(shí)針旋轉(zhuǎn)90°得到第三個(gè)正方形,依此方法繼續(xù)滾動(dòng)下去得到第四個(gè)正方形,…,第n個(gè)正方形.設(shè)滾動(dòng)過(guò)程中的點(diǎn)P的坐標(biāo)為(x,y).

(1)畫出第三個(gè)和第四個(gè)正方形的位置,并直接寫出第三個(gè)正方形中的點(diǎn)P的坐標(biāo);
(2)畫出點(diǎn)P(x,y)運(yùn)動(dòng)的曲線(0≤x≤4),并直接寫出該曲線與x軸所圍成區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案