已知△ABC中,AC=4,BC=3,AB=5,則cosA=   
【答案】分析:根據(jù)三角形三邊的長判斷出三角形的形狀,畫出圖形,再根據(jù)銳角三角函數(shù)的定義解答.
解答:解:∵△ABC中,AC=4,BC=3,AB=5,42+32=52,
∴△ABC是直角三角形.
∴cosA==
點評:本題考查了直角三角形的判定和銳角三角函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知△ABC中,AC=BC,∠C=Rt∠.如圖,將△ABC進(jìn)行折疊,使點A落在線段BC上(包括點B和點C),設(shè)點A的落點為D,折痕為EF,當(dāng)△DEF是等腰三角形時,點D可能的位置共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點F是AB中點,兩邊FD、FE分別交AC,BC于點D,E兩點,給出以下個結(jié)論:
①CD=BE  
②四邊形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四邊形CDFE=
12
S△ABC
.當(dāng)∠DFE在△ABC內(nèi)繞頂點F旋轉(zhuǎn)時(點D不與A,C重合),
上述結(jié)論中始終正確的有
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求證:AB=BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=BC,AD平分∠BAC交BC于D,點E為AB上一點,且∠EDB=∠B,現(xiàn)有下列兩個結(jié)論:①AB=AD+CD ②AB=AC+CD.
(1)如圖1,若∠C=90°,則結(jié)論
成立,并證明你的結(jié)論.
(2)如圖2,若∠C=100°,則結(jié)論
成立,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=BC,∠ACB=90゜,點P在射線AC上,連接PB,將線段PB繞點B逆時針旋轉(zhuǎn)90゜得線段BN,AN交直線BC于M.
(1)如圖1.若點P與點C重合,則
AM
MN
=
1
1
MC
AP
=
1
2
1
2
(直接寫出結(jié)果):
(2)如圖2,若點P在線段AC上,求證:AP=2MC;
(3)如圖3,若點P在線段AC的延長線上,完成圖形,并直接寫出
MC
AP
=
1
2
1
2

查看答案和解析>>

同步練習(xí)冊答案