如果a為任意實(shí)數(shù),下列根式一定有意義的是( )
A.
B.
C.
D.
【答案】分析:根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0可知有意義.
解答:解:被開方數(shù)大于或等于0時(shí),二次根式一定有意義,
幾個(gè)被開方數(shù)中,不論a取何值,一定大于0的只有a2+1.故選C.
點(diǎn)評(píng):主要考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=
1
4
(x-1)(x-b)
(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為
(b,0)
(b,0)
,點(diǎn)C的坐標(biāo)為
(0,
1
4
b)
(0,
1
4
b)
(用含b的代數(shù)式表示);
(2)若b=8,請(qǐng)你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)請(qǐng)你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀學(xué)習(xí)下材料,并完成下面的兩個(gè)小題.
在我們的和諧互助學(xué)習(xí)課堂上,老師跟一個(gè)小組的同學(xué)在進(jìn)行激烈的討論.下面是他們的對(duì)話:
小卉:對(duì)于任意實(shí)數(shù)a的平方是非負(fù)數(shù).
小銘:對(duì)呀,也就是說a平方最小是0.即:a2≥0,當(dāng)a=0時(shí),a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個(gè)不為0,原等式就不成立.
老師:你們的觀點(diǎn)都是正確的.
(1)當(dāng)x=
-1
-1
,時(shí),多項(xiàng)式x2+2x+1取得最小值為
0
0
.(直接填上結(jié)果)    
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省湖州市長(zhǎng)興縣實(shí)驗(yàn)初中九年級(jí)下學(xué)期期中調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知拋物線(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為      ,點(diǎn)C的坐標(biāo)為      (用含b的代數(shù)式表示);
(2)若b=8,請(qǐng)你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)請(qǐng)你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可看作相似的特殊情況)如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀學(xué)習(xí)下材料,并完成下面的兩個(gè)小題.
在我們的和諧互助學(xué)習(xí)課堂上,老師跟一個(gè)小組的同學(xué)在進(jìn)行激烈的討論.下面是他們的對(duì)話:
小卉:對(duì)于任意實(shí)數(shù)a的平方是非負(fù)數(shù).
小銘:對(duì)呀,也就是說a平方最小是0.即:a2≥0,當(dāng)a=0時(shí),a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個(gè)不為0,原等式就不成立.
老師:你們的觀點(diǎn)都是正確的.
(1)當(dāng)x=______,時(shí),多項(xiàng)式x2+2x+1取得最小值為______.(直接填上結(jié)果)  
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀學(xué)習(xí)下材料,并完成下面的兩個(gè)小題.
在我們的和諧互助學(xué)習(xí)課堂上,老師跟一個(gè)小組的同學(xué)在進(jìn)行激烈的討論.下面是他們的對(duì)話:
小卉:對(duì)于任意實(shí)數(shù)a的平方是非負(fù)數(shù).
小銘:對(duì)呀,也就是說a平方最小是0.即:a2≥0,當(dāng)a=0時(shí),a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個(gè)不為0,原等式就不成立.
老師:你們的觀點(diǎn)都是正確的.
(1)當(dāng)x=______,時(shí),多項(xiàng)式x2+2x+1取得最小值為______.(直接填上結(jié)果)    
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案