【題目】已知Rt△ABC的三邊AC=6cmBC=8cm,AB=10cm,則AB邊上的中線為_____cm,AB邊上的高為_____cm

【答案】5,48

【解析】

首先根據(jù)勾股定理的逆定理可證明△ABC是直角三角形,再根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半可得答案;在Rt△ABC中,可根據(jù)直角三角形面積的不同表示方法求出AB邊上的高的長.

解:∵62+82=102,

∴AC2+CB2=AB2,

∴△ABC是直角三角形,

∴∠C=90°,

∴AB邊上的中線為AB=5cm,

Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,設(shè)AB邊上的高為h

△ABC的面積S=ACBC=ABh,

∴h==4.8cm

故答案為:54.8cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前,安徽黃山腳下的小村莊的集市上人山人海,還有人在擺摸彩游戲,只見他手拿一個黑色的袋子,內(nèi)裝大小、形狀、質(zhì)量完全相同的白球20只,且每一個球上都寫有號碼(1~20號)和1只紅球,規(guī)定:每次只摸一只球.摸前交1元錢且在1~20內(nèi)寫一個號碼摸到紅球獎5元,摸到號碼數(shù)與你寫的號碼相同獎10元.

(1)你認(rèn)為該游戲?qū)?/span>摸彩者有利嗎?說明你的理由.

(2)若一個摸彩者多次摸獎后,他平均每次將獲利或損失多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB30°,點P在∠AOB的內(nèi)部,P1P關(guān)于OA對稱,P2P關(guān)于OB對稱,則△P1OP2

A. 30°角的直角三角形 B. 頂角是30的等腰三角形

C. 等邊三角形 D. 等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某水庫大壩的橫斷面是梯形ABCD,壩頂寬CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C間的水平距離為12m,則斜坡AD的坡角∠A=_____,壩底寬AB=______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應(yīng)點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.

(1)求證:四邊形ACBP是菱形;

(2)若⊙O半徑為1,求菱形ACBP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設(shè)長方形地面,觀察下列圖形并解答問題.

1)在第a個圖中,共有   塊白瓷磚和   塊黑瓷磚(用含a的代數(shù)式表示);

2)若按上圖的方式鋪一塊長方形地面共用了420塊瓷磚,求此時a的值;

3)已知白瓷磚每塊6元,黑瓷磚每塊8元,某工廠按如圖方式鋪設(shè)廠房地面,其中黑瓷磚的費用比白瓷磚的費用多924元,問白瓷磚和黑瓷磚各用了多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】14分)如圖1,△ABC△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.

1)請直接寫出線段BE與線段CD的關(guān)系:

2)如圖2,將圖1中的△ABC繞點A順時針旋轉(zhuǎn)角α0α360°),

1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;

當(dāng)AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案