【題目】將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的倍,得,即如圖①,我們將這種變換記為.
如圖①,對(duì)作變換得,則________;直線與直線所夾的銳角為_(kāi)_______度;
如圖②,中,,,對(duì)作變換得,使點(diǎn)、、在同一直線上,且四邊形為矩形,求和的值;
如圖③,
【答案】(1) 3:1,60; (2) n =2, θ=60°;(3) θ=72°,n=.
【解析】
(1)由旋轉(zhuǎn)與相似的性質(zhì),即可得,然后由與中,,,可得,即可求得直線與直線所夾的銳角的度數(shù);
(2)由四邊形是矩形,可得,然后由,即可求得的度數(shù),又由含角的直角三角形的性質(zhì),即可求得的值;
(3)由四邊形是平行四邊形,易求得,又由,根據(jù)相似三角形的對(duì)應(yīng)成比例,易得,繼而求得答案.
(1)根據(jù)題意得:,
,,
,
.
故答案為:,.
∵四邊形是矩形,
∴.
∴.
在中,,,
∴,
∴;
∵四邊形是平行四邊形,
∴,
又∵,
∴.
∴,而,
∴,
∴,
∴,
而,,
∴,
∴,
∵,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,是的中點(diǎn),將沿直線折疊后得到,延長(zhǎng)交于點(diǎn).若,,則的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷(xiāo)售量m(件)與時(shí)間t(天)的關(guān)系滿足:m=﹣2t+96.且未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40且t為整數(shù)).下面我們就來(lái)研究銷(xiāo)售這種商品的有關(guān)問(wèn)題
(1)請(qǐng)分別寫(xiě)出未來(lái)40天內(nèi),前20天和后20天的日銷(xiāo)售利潤(rùn)w(元)與時(shí)間t的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中,該公司決定每銷(xiāo)售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程.公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長(zhǎng)為米的籬笆圍成.已知墻長(zhǎng)為米(如圖),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為米.
若苗圃園的面積為平方米,求;
若平行于墻的一邊長(zhǎng)不小于米,這個(gè)苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開(kāi)始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開(kāi)始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用﹣1來(lái)表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵22<()2<32,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2).
請(qǐng)解答:
(1)的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b﹣的值.
(3)已知x是3+的整數(shù)部分,y是其小數(shù)部分,直接寫(xiě)出x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】凸四邊形的四個(gè)頂點(diǎn)滿足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com