【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點.若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( )
A.
B.
C.
D.
【答案】D
【解析】解:∵四邊形DEFG是正方形, ∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
∴ ①, ②,
由①可得, ,解得:AE= ,
將AE= 代入②,得: ,
解得:BN= ,
故選:D.
【考點精析】關于本題考查的正方形的性質和相似三角形的判定與性質,需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作OF的平行線交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)求 的比值;若DH=6,求EF和半徑OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了相應“足球進校園”的號召,某體育用品商店計劃購進一批足球,第一次用6000元購進A品牌足球m個,第二次又用6000元購進B品牌足球,購進的B品牌足球的數(shù)量比購進的A品牌足球多30個,并且每個A品牌足球的進價是每個B品牌足球的進價的 .
(1)求m的值;
(2)若這兩次購進的A,B兩種品牌的足球分別按照a元/個, a元/個兩種價格銷售,全部銷售完畢后,可獲得的利潤不低于4800元,求出a的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=21,BC=20,有一個半徑為10的圓分別與AB、BC相切,則此圓的圓心是( )
A.AB邊的中垂線與BC中垂線的交點
B.∠B的平分線與AB的交點
C.∠B的平分線與AB中垂線的交點
D.∠B的平分線與BC中垂線的交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線L:y=ax2+2(a﹣1)x﹣4(常數(shù)a>0)經過點A(﹣2,0)和點B(0,﹣4),與x軸的正半軸交于點E,過點B作BC⊥y軸,交L于點C,以OB,BC為邊作矩形OBCD.
(1)當x=2時,L取得最低點,求L的解析式.
(2)用含a的代數(shù)式分別表示點C和點E的坐標;
(3)當S矩形OBCD=4時,求a的值.
(4)如圖2,作射線AB,OC,當AB∥OC時,將矩形OBCD從點O沿射線OC方向平移,平移后對應的矩形記作O′B′C′D′,直接寫出點A到直線BD′的最大距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據(jù)調查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調查,根據(jù)(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中點,DE⊥AB,垂足為點F,且AB=DE.
(1)求證:BD=BC;
(2)若BD=6cm,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則 的值是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,點E,F(xiàn)分別在AB,CD上,連接EF,∠AEF、∠CFE的平分線交于點G,∠BEF、∠DFE的平分線交于點H.
(1)求證:四邊形EGFH是矩形
(2)小明在完成(1)的證明后繼續(xù)進行了探索,過G作MN∥EF,分別交AB,CD于點M,N,過H作PQ∥EF,分別交AB,CD于點P,Q,得到四邊形MNQP,此時,他猜想四邊形MNQP是菱形,請在下列框中補全他的證明思路.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com