【題目】如圖1,拋物線L:y=ax2+2(a﹣1)x﹣4(常數(shù)a>0)經(jīng)過(guò)點(diǎn)A(﹣2,0)和點(diǎn)B(0,﹣4),與x軸的正半軸交于點(diǎn)E,過(guò)點(diǎn)B作BC⊥y軸,交L于點(diǎn)C,以O(shè)B,BC為邊作矩形OBCD.
(1)當(dāng)x=2時(shí),L取得最低點(diǎn),求L的解析式.
(2)用含a的代數(shù)式分別表示點(diǎn)C和點(diǎn)E的坐標(biāo);
(3)當(dāng)S矩形OBCD=4時(shí),求a的值.
(4)如圖2,作射線AB,OC,當(dāng)AB∥OC時(shí),將矩形OBCD從點(diǎn)O沿射線OC方向平移,平移后對(duì)應(yīng)的矩形記作O′B′C′D′,直接寫出點(diǎn)A到直線BD′的最大距離.
【答案】
(1)
解:拋物線L的對(duì)稱軸是x=﹣ ,∴x= ﹣1,
∵當(dāng)x=2時(shí),L取得最低點(diǎn),則 ﹣1=2,
∴a= ,
∴L的解析式為:y= x2﹣ x﹣4
(2)
解:∵在L上,且BC⊥y軸,B(0,﹣4),
∴設(shè)點(diǎn)C坐標(biāo)為C(m,﹣4)(其中m≠0),代入L,
﹣4=am2+2(a﹣1)m﹣4,解得,m= ﹣2,
∴點(diǎn)C的坐標(biāo)是( ﹣2,﹣4),
∵點(diǎn)A與點(diǎn)E關(guān)于L的對(duì)稱軸x= ﹣1對(duì)稱,A(﹣2,0),
設(shè)點(diǎn)E的坐標(biāo)是(n,0)(其中n>0),
∴ ﹣1﹣(﹣2)=n﹣( ﹣1),解得 n= ,
∴點(diǎn)E的坐標(biāo)是( ,0)
(3)
解:∵S矩形OBCD=4| ﹣2|=4,
∴| ﹣2|=1,
當(dāng)矩形OBCD在y軸右側(cè)時(shí),0<a<1,有 ﹣2=1,解得a= ;
當(dāng)矩形OBCD在y軸左側(cè)時(shí),a>1,有 ﹣2=﹣1,解得a=2
(4)
解:由圖象可知,當(dāng)AB⊥BD′時(shí),點(diǎn)A到直線BD′的距離最大,最大距離為AB= = =2 .
【解析】(1)利用頂點(diǎn)坐標(biāo)公式,列出方程即可解決問(wèn)題.(2)由BC⊥y軸,B(0,﹣4),設(shè)點(diǎn)C坐標(biāo)為C(m,﹣4)(其中m≠0),代入L,得﹣4=am2+2(a﹣1)m﹣4,解得,m= ﹣2,可得點(diǎn)C坐標(biāo),因?yàn)辄c(diǎn)A與點(diǎn)E關(guān)于L的對(duì)稱軸x= ﹣1對(duì)稱,A(﹣2,0),設(shè)點(diǎn)E的坐標(biāo)是(n,0)(其中n>0),可得 ﹣1﹣(﹣2)=n﹣( ﹣1),解得 n= ,由此即可求出點(diǎn)E坐標(biāo).(3)由題意S矩形OBCD=4| ﹣2|=4,可得| ﹣2|=1,分兩種情形①當(dāng)矩形OBCD在y軸右側(cè)時(shí).②當(dāng)矩形OBCD在y軸左側(cè)時(shí).分別求解即可.(4)由圖象可知,當(dāng)AB⊥BD′時(shí),點(diǎn)A到直線BD′的距離最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開(kāi)后,折痕DE分別交AB,AC于點(diǎn)E、G,連接GF,有下列結(jié)論: ①∠AGD=112.5°;②tan∠AED= +1;③四邊形AEFG是菱形;④S△ACD= S△OCD .
其中正確結(jié)論的序號(hào)是 . (把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過(guò)點(diǎn)A時(shí),求⊙P被OB截得的弦長(zhǎng).
(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為1的正方形ABCD和ABEF中,頂點(diǎn)A,B在雙曲線y1= (k1≠0)上,頂點(diǎn)E,F(xiàn)在雙曲線y2= (k2≠0)上,頂點(diǎn)C,D分別在x軸和y軸上,則k1= , k2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點(diǎn).若∠B=90°,AB=4,BC=3,EF=1,則BN的長(zhǎng)度為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1⊥l2 , ⊙O與l1 , l2都相切,⊙O的半徑為2cm,矩形ABCD的邊AD、AB分別與l1 , l2重合,AB=4 cm,AD=4cm,若⊙O與矩形ABCD沿l1同時(shí)向右移動(dòng),⊙O的移動(dòng)速度為3cm/s,矩形ABCD的移動(dòng)速度為4cm/s,設(shè)移動(dòng)時(shí)間為t(s)
(1)如圖①,連接OA、AC,則∠OAC的度數(shù)為°;
(2)如圖②,兩個(gè)圖形移動(dòng)一段時(shí)間后,⊙O到達(dá)⊙O1的位置,矩形ABCD到達(dá)A1B1C1D1的位置,此時(shí)點(diǎn)O1 , A1 , C1恰好在同一直線上,求圓心O移動(dòng)的距離(即OO1的長(zhǎng));
(3)在移動(dòng)過(guò)程中,圓心O到矩形對(duì)角線AC所在直線的距離在不斷變化,設(shè)該距離為d(cm),當(dāng)d<2時(shí),求t的取值范圍(解答時(shí)可以利用備用圖畫出相關(guān)示意圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知反比例函數(shù)y= (x>0)的圖象和菱形OABC,且OB=4,tan∠BOC= .
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若將菱形向右平移,菱形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求菱形的平移距離和反比例函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com