【題目】如圖 1,在等邊ABC 中,AD是∠BAC的平分線,一個含有120°角的MPN的頂點P(MPN=120°)與點D重合,一邊與AB垂直于點E,另一邊與AC交于點F.

①請猜想并寫出AE+AFAD之間滿足的數(shù)量關系,不必證明.

②在圖1的基礎上,若MPN繞著它的頂點P旋轉,E、F仍然是MPN的兩邊與AB、AC的交點,當三角形紙板的邊不與AB垂直時,如圖2,(1)中猜想是否仍然成立?說明理由.

③如圖 3,若MPN繞著它的頂點P旋轉,當MPN的一邊與AB的延長線相交,另一邊與AC的反向延長線相交時,AE、AFAD之間又滿足怎樣的數(shù)量關系?直接寫出結論,不必證明.

【答案】(1)AE+AF=AD,(2)仍然成立,(3)AE﹣AF=AD.

【解析】

(1)根據(jù)題意利用等邊三角形、角平分線直角三角形、銳角三角函數(shù)推理可得出

(2)根據(jù)(1)中結論,利用圖1,可推理得出結論仍然成立;
(3)結合(1)(2)可推理出

解:(1)

(2)仍然成立,

證明:過 D 點作 AB、AC 的垂線,垂足為 Q、W,

可證DEQ≌△DFW,

AQ=AW,EQ=FW,

∴仍然滿足

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)?方法解下列一元二次方程:

(1)(2x﹣1)2﹣9=0

(2)(x﹣1)(x+2)=4

(3)3x﹣1=2x

(4)3(x﹣5)2=2(5﹣x)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅想利用陽光下的影長測量學校旗桿AB的高度.如圖,他在某一時刻在地面上豎直立一個2米長的標桿CD,測得其影長DE=0.4米.

1)請在圖中畫出此時旗桿AB在陽光下的投影BF

2如果BF=1.6,求旗桿AB的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、F、EC在同一直線上,AB∥CD∠ABE=∠CDF,AF=CE

1)從圖中任找兩組全等三角形;

2)從(1)中任選一組進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c的圖象交x軸于A(4,0),B(﹣1,0)兩點,交y軸于點C,連結AC.

(1)填空:該拋物線的函數(shù)解析式為 ,其對稱軸為直線 ;

(2)P是拋物線在第一象限內圖象上的一動點,過點Px軸的垂線,交AC于點Q,試求線段PQ的最大值;

(3)(2)的條件下,當線段PQ最大時,在x軸上有一點E(不與點O,A重合,且EQ=EA,在x軸上是否存在點D,使得ACDAEQ相似?如果存在,請直接寫出點D的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BPCP的延長線分別交AD于點E、F,連接BD、DP,BDCF相交于點H.給出下列結論:

ABE≌△DCF;DP2=PHPB;

其中正確的是____________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)的圖象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在這個函數(shù)的圖象上.

(1)圖象的另一支位于什么象限?常數(shù)n的取值范圍是什么?

(2)試比較a、b的大;

(3)作AC⊥x軸于點C,若△AOC的面積為5,求這個反比例函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案