如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方,其中∠OMN=30°。

(1)將圖1中的三角尺繞點O順時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC,求∠CON的度數(shù);

(2)將圖1中的三角尺繞點O按每秒10°的速度沿順時針方向旋轉一周,在旋轉的過程中,在第         秒時,邊MN恰好與射線OC平行;在第         秒時,直線ON恰好平分銳角∠AOC。(直接寫出結果);

(3)將圖1中的三角尺繞點O順時針旋轉至圖3,使ON在∠AOC的內部,請?zhí)骄俊?i>AOM與∠NOC之間的數(shù)量關系,并說明理由.

【解析】此題考查了角的計算,關鍵是應該認真審題并仔細觀察圖形,找到各個量之間的關系,是解題的關鍵

 

【答案】

(1)已知∠AOC=60°,

所以∠BOC=120°,

OM平分∠BOC,∠COM=∠BOC=60°

所以∠CON=∠COM+90°=150°

(2)當直線ON與OA重合時,MN恰好與射線OC平行,

∴∠AOM=90°,

由題意得,10t=90°

∴t=9

∵∠ONM=60°

∴當∠COM=30°時,MN恰好與射線OC平行

∴∠NOM=270°

由題意得,10t=270°

∴t=27

延長NO,

∵∠BOC=120°

∴∠AOC=60°,

當直線ON恰好平分銳角∠AOC,

∴∠AOD=∠COD=30°,

即順時針旋轉300°時NO延長線平分∠AOC,

由題意得,10t=300°

∴t=30,

當NO平分∠AOC,

∴∠NOR=30°,

即順時針旋轉120°時NO平分∠AOC,

∴10t=120°,

∴t=12,

∴t=12或30;

(3)因為∠MON=90°,∠AOC=60°,

所以∠AOM=90°-∠AON

NOC=60°-∠AON

所以∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°,

所以∠AOM與∠NOC之間的數(shù)量關系為:∠AOM-∠NOC=30°

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點O以每秒6°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為
10或40
(直接寫出結果).
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,求∠AOM-∠NOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=ax2-4ax+b經過點A(1,0),與x軸交于點B,與y軸交于點C,且OB=OC.
精英家教網(wǎng)
(1)求拋物線的解析式;
(2)將△OAC沿AC翻折得到△ACE,直線AE交拋物線于點P,求點P的坐標;
(3)如圖2,點M為直線BC上一點(不與B、C重合),連OM,將OM繞O點旋轉90°,得到線段ON,是否存在這樣的點N,使點N恰好在拋物線上?若存在,求出點N的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州)如圖①,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=
4
5
,反比例函數(shù)y=
k
x
(k>0)在第一象限內的圖象經過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標;
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=ax2+4x+b經過點A(1,0),B(3,0),與y軸交于點C;
(1)求拋物線的解析式;
(2)將△OAC沿AC翻折得到△ACE,直線AE交拋物線于點P,求點P的坐標;
(3)如圖2,點M為直線BC上一點(不與B、C重合),在拋物線上是否存在這樣的點N,使三點O,M,N構成以O為直角頂點的等腰直角三角形?若存在,求出點N的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉至圖2的位置,使得ON落在射線OB上,此時三角板旋轉的角度為
90
90
度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉至圖3的位置,使得ON在∠AOC的內部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)在上述直角三角板從圖1旋轉到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉,當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值.

查看答案和解析>>

同步練習冊答案