【題目】為了測量某風景區(qū)內一座塔AB的高度,某人分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°30°,已知樓高CD10m,求塔的高度。(結果精確到01m)(參考數(shù)據(jù)≈141,≈173

【答案】AB≈23.7

【解析】

過點DDE⊥AB,設AB=x,則BC=x,根據(jù)矩形可得BE=CD=10,則AE=10x,根據(jù)Rt△ADEtan∠ADE的值求出x的值.

AB=x,過點DDE⊥AB,垂足為E,得矩形BCDE

∴BE=CD=10DE=BC, ∴AE=x-10 Rt△ABC中,∵∠ACB=45°,∠B=90°

∴∠ACB=∠BAC=45° ∴BC=AB=x

Rt△AED中, ∵∠ADE=30°,DE=BC=x,tan∠ADE=

∴x=15+5≈23.7(m)

答:塔AB的高度約為23.7m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知將一副三角板(直角三角板和直角三角板)的兩個頂點重合于點.

1)如圖1,將直角三角板繞點逆時針方向轉動,當恰好平分時,的度數(shù)是 _.

2)如圖2,當三角板擺放在內部時,作射線平分,射線平分,如果三角板內繞點任意轉動,的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

3)當三角板繞點繼續(xù)轉動到如圖3所示的位置時,作射線平分,射線平分,請你求出此時鈍角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=60°,DBC上一點,過點DDEABE
1)連接AD,取AD中點F,連接CFCE,FE,判斷CEF的形狀并說明理由
2)若BD=CD,將BED繞著點D逆時針旋轉0n180),當點B落在RtABC的邊上時,求出n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于整式(其中m是大于的整數(shù)).

1)若,且該整式是關于x的三次三項式,求m的值;

2)若該整式是關于x的二次單項式,求mn的值;

3)若該整式是關于x的二次二項式,則mn要滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將長方形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上點F處,折痕為BE,再沿過點E的直線折疊,使點D落在BE邊上點D’處,折痕為EG,展平紙片,則圖中∠FEG= ______ °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ab,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數(shù).

1= °;2= °;3= °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形中心在原點,且頂點的坐標為.動點分別從點同時出發(fā),繞著正方形的邊按順時針方向運動,當點回到點時兩點同時停止運動,運動時間為秒.連接,線段與正方形的邊圍成的面積較小部分的圖形記為

1)請寫出點的坐標.

2)若的速度均為1個單位長度秒,試判斷在運動過程中,的面積是否發(fā)生變化,如果不變求出該值,如果變化說明理由.

3)若點速度為2個單位長度秒,點為1個單位長度/秒,當的面積為時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°,BEAD于點E,且四邊形ABCD的面積為144,則BE________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,關于x的二次函數(shù)yax22axa0)的頂點為C,與x軸交于點OA,關于x的一次函數(shù)y=﹣axa0).

1)試說明點C在一次函數(shù)的圖象上;

2)若兩個點(k,y1)、(k+2,y2)(k≠0±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點Ey軸的平行線,與一次函數(shù)圖象交于點F,當0a≤2時,求線段EF的最大值.

查看答案和解析>>

同步練習冊答案