【題目】如圖,在中, 是它的角平分線, 是上的一點(diǎn), , 分別平分, , ,垂足為點(diǎn).
求證:( ).().
【答案】見解析.
【解析】試題分析:(1)由三角形內(nèi)角和定理可知∠ABC+∠ACB=180°﹣∠BAC,然后利用角平分線的性質(zhì)即可求出∠BGC=90°+∠BAC.
(2)由AD是角平分線,得到∠BAD=∠CAD,然后根據(jù)圖形可知:∠1=∠BAD+∠ABG,∠2=90°﹣∠GCH,最后根據(jù)三角形的內(nèi)角和定理以及外角的性質(zhì)即可求出答案.
試題解析:解:(1)由三角形內(nèi)角和定理可知:∠ABC+∠ACB=180°﹣∠BAC.∵BG,CG分別平分∠ABC,∠ACB,∠GBC=∠ABC,∠GCB=∠ACB,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠BAC)=90°﹣∠BAC,∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(∠ABC+∠ACB)=90°+∠BAC;
(2)∵AD是它的角平分線,∴∠BAD=∠CAD,∴∠1=∠BAD+∠ABG.∵GH⊥BC,∴∠GHC=90°,∴∠2=90°﹣∠GCH=90°﹣∠ACB=90°﹣(180°﹣∠DAC﹣∠ADC)
=∠DAC+∠ADC.
∵∠ADC=∠ABC+∠BAD,∴ ∠ADC=∠ABC+∠∠BAD=∠ABG+∠BAD,∴∠2=∠DAC+∠ADC=∠BAD+∠BAD+∠ABG=∠BAD+∠ABG,∴∠1=∠2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,以B為圓心,BC長為半徑畫弧,分別交AC、AB于D、E兩點(diǎn),并連接BD、DE.若∠A=30°,AB=AC,則∠BDE的度數(shù)為( )
A. 67.5° B. 52.5° C. 45° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時(shí)乘以2得:
2S=2+22+23+24+25+…+22013+22014
將下式減去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
請(qǐng)你仿照此法計(jì)算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(請(qǐng)?jiān)诶ㄌ?hào)里注明重要的推理依據(jù))
如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商行計(jì)劃購進(jìn)A、B兩種水果共200箱,這兩種水果的進(jìn)價(jià)、售價(jià)如下表所示:
價(jià)格 | 進(jìn)價(jià)(元/箱) | 售價(jià)(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若該商行進(jìn)貸款為1萬元,則兩種水果各購進(jìn)多少箱?
(2)若商行規(guī)定A種水果進(jìn)貨箱數(shù)不低于B種水果進(jìn)貨箱數(shù)的 ,應(yīng)怎樣進(jìn)貨才能使這批水果售完后商行獲利最多?此時(shí)利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論不正確的是( )
A.a<0
B.c>0
C.a+b+c>0
D.b2﹣4ac>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,試說明:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E在DM上,且BE平分∠DBC,試說明∠ABE=∠AEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象由直線y=3x向下平移得到,且過點(diǎn)A(1,2).
(1)求一次函數(shù)的解析式;
(2)求直線y=kx+b與x軸的交點(diǎn)B的坐標(biāo);
(3)設(shè)坐標(biāo)原點(diǎn)為O,一條直線過點(diǎn)B,且與兩條坐標(biāo)軸圍成的三角形的面積是,這條直線與y軸交于點(diǎn)C,求直線AC對(duì)應(yīng)的一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com