【題目】1)如圖①,在8×6的網(wǎng)格圖中,每個小正方形邊長均為1,原點OABC的頂點均為格點.點C坐標(biāo)為(24),以O為位似中心,在網(wǎng)格圖中作ABC,使ABCABC位似,且位似比為12;(保留作圖痕跡)

2)則點C的坐標(biāo)為  ,周長比CABCCABC 

3)如圖②,ABDE是直立在地面上的兩根立柱.AB6m,某一時刻AB在陽光下的投影BC4m,DE在陽光下的投影長為6m

①請你在圖②中畫出此時DE在陽光下的投影EF

②根據(jù)題中信息,求得立柱DE的長為  m

【答案】1)如圖,△ABC′即為所求作三角形,見解析;(2)(1,2);12;(3)如圖所示,EF就是DE的投影.見解析;②DE9m

【解析】

1)利用位似圖形的性質(zhì)得出A′,B′C′的位置,進(jìn)而得出答案;
2)由(1)中所畫圖形可得;
3)①根據(jù)已知連接AC,過點DDFAC,即可得出EF就是DE的投影;
②利用三角形△ABC∽△DEF得出比例式,求出DE即可.

解:(1)如圖,△ABC即為所求作三角形,

2)由(1)知,點C′的坐標(biāo)為(1,2),

∵位似比為12

∴周長比CA′B′C′CABC=12

故答案為:(1,2);12

3)①作法:連接AC,過點DDFAC,交直線BEF

如圖所示,線段EF就是DE的投影.

②∵太陽光線是平行的,

ACDF

∴∠ACB=∠DFE

又∵∠ABC=∠DEF90°,

∴△ABC∽△DEF

,

AB6m,BC4m,EF6m,

,

DE9m

故答案為:DE9m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1kx+nn0)和反比例函數(shù)y2m0x0).

1)如圖1,若n=﹣2,且兩個函數(shù)的圖象都經(jīng)過點A3,4).

①求mk的值;

②直接寫出當(dāng)y1y2x的范圍:  ;

2)如圖2,過點P10)作y軸的平行線l與函數(shù)y2的圖象相交于點B、與反比例函數(shù)y3x0)的圖象相交于點C

①若k2,直線l與函數(shù),的圖象相交點D.當(dāng)點B、C、D中的一點到另外兩點的距離相等時,求mn的值;

②過點Bx軸的平行線與函數(shù)y1的圖象相交與點E.當(dāng)mn的值取不大于1的任意實數(shù)時,點B、C間的距離與點B、E間的距離之和d始終是一個定值.求此時k的值及定值d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對應(yīng)值如表

x

1

0

1

3

y

1

3

5

3

下列結(jié)論:

ac<0;

當(dāng)x>1時,y的值隨x值的增大而減。

3是方程ax2+(b1)x+c=0的一個根;

當(dāng)1<x<3時,ax2+(b1)x+c>0.

其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,且于點,點分別是邊上的動點,且.

①求證:四邊形是平行四邊形;

②當(dāng)為何值時,四邊形是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點OAC、BD的長()是方程的兩個根.P從點A出發(fā),以每秒1個單位的速度沿A→O→B→A的方向運動,運動時間為t(秒).

1)求ACBD的長;

2)求當(dāng)AP恰好平分時,點P運動時間t的值;

3)在運動過程中,是否存在點P,使是等腰三角形?若存在,請求出運動時間t的值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在“用頻率估計概率”的實驗中,統(tǒng)計了某種頻率結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,那么符合這一結(jié)果的實驗最有可能的是(  )

A. 擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面向上”

B. 擲一個質(zhì)地均勻的正六面體骰子,落地時朝上的面點數(shù)是6

C. 在“石頭剪刀、和”的游戲中,小明隨機(jī)出的是“剪刀”

D. 袋子中有1個紅球和2個黃球,只有顏色上的區(qū)別,從中隨機(jī)取出一個球是黃球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AC、AB的中點,CFABED的延長線于點F,連接AF、CE.

(1)求證:四邊形BCEF是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時,四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價為每條80元時,每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5條.設(shè)每條褲子的售價為(為正整數(shù)),每月的銷售量為條.

(1)直接寫出的函數(shù)關(guān)系式;

(2)設(shè)該網(wǎng)店每月獲得的利潤為元,當(dāng)銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤不低于4220元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場要建一個飼養(yǎng)場(長方形ABCD),飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長57米,設(shè)飼養(yǎng)場(長方形ABCD)的寬為a米.

(1)飼養(yǎng)場的長為多少米(用含a的代數(shù)式表示).

(2)若飼養(yǎng)場的面積為288m2,求a的值.

(3)當(dāng)a為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達(dá)到的最大面積為多少平方米?

查看答案和解析>>

同步練習(xí)冊答案