【題目】“知識改變命運(yùn),科技繁榮祖國.”為提升中小學(xué)生的科技素養(yǎng),我區(qū)每年都要舉辦中小學(xué)科技節(jié).為迎接比賽,某校進(jìn)行了宣傳動(dòng)員并公布了相關(guān)項(xiàng)目如下:
A——桿身橡筋動(dòng)力模型;B——直升橡筋動(dòng)力模型;C——空轎橡筋動(dòng)力模型.右圖為該校報(bào)名參加科技比賽的學(xué)生人數(shù)統(tǒng)計(jì)圖.
(1)該校報(bào)名參加B項(xiàng)目學(xué)生人數(shù)是 人;
(2)該校報(bào)名參加C項(xiàng)目學(xué)生人數(shù)所在扇形的圓心角的度數(shù)是 °;
(3)為確定參加區(qū)科技節(jié)的學(xué) 生人選,該校在集訓(xùn)后進(jìn)行了校內(nèi)選拔賽,最后一輪復(fù)賽,決定在甲、乙2名候選人中選出1人代表學(xué)校參加區(qū)科技節(jié)B項(xiàng)目的比賽,每人進(jìn)行了4次試飛,對照一定的標(biāo)準(zhǔn),判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教練,請你用學(xué)過的數(shù)學(xué)統(tǒng)計(jì)量分析派誰代表學(xué)校參賽?請說明理由.
【答案】(1) 10 ;(2) 120°;(3)選乙,理由見解析.
【解析】試題分析:(1)用參加A項(xiàng)目學(xué)生人數(shù)除以參加A項(xiàng)目學(xué)生人數(shù)所占的百分比即可求出參加科技比賽的總?cè)藬?shù),用總?cè)藬?shù)乘以參加B項(xiàng)目學(xué)生人數(shù)所占的百分比即可,(2)用360°乘以報(bào)名參加C項(xiàng)目學(xué)生人數(shù)所占的百分比即可,(3)分別計(jì)算出甲、乙2名候選人的平均分和方差即可.
試題解析:(1)∵參加科技比賽的總?cè)藬?shù)是6÷25%=24,
∴報(bào)名參加B項(xiàng)目學(xué)生人數(shù)是24×41.67%=10,
故答案為10;
(2)該校報(bào)名參加C項(xiàng)目學(xué)生人數(shù)所在扇形的圓心角的度數(shù)是360×(125%41.67%)=120°,
故答案為120°;
(3)∵=75,
∴S2甲= [(8075)2+(7075)2+(10075)2+(5075)2]=325,
S2乙═ [(7575)2+(8075)2+(7575)2+(7075)2]=12.5,
∵S2甲>S2乙,
∴選乙。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿軸以每秒1個(gè)單位長的速度向上移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)t=3時(shí),求l的解析式;
(2)若點(diǎn)M,N位于l的異側(cè),確定t的取值范圍;
(3)直接寫出t為何值時(shí),點(diǎn)M關(guān)于l的對稱點(diǎn)落在坐標(biāo)軸上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在D′處,則重疊部分△AFC的面積是( )
A.8
B.10
C.20
D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平面直角坐標(biāo)系中,直線l與y軸相交于點(diǎn)A(0,m)其中m<0,與x軸相交于點(diǎn)B(4,0).拋物線y=ax2+bx(a>0)的頂點(diǎn)為F,它與直線l相交于點(diǎn)C,其對稱軸分別與直線l和x軸相交于點(diǎn)D和點(diǎn)E.
(1)設(shè)a=,m=﹣2時(shí),
①求出點(diǎn)C、點(diǎn)D的坐標(biāo);
②拋物線y=ax2+bx上是否存在點(diǎn)G,使得以G、C、D、F四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?如果存在,求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.
(2)當(dāng)以F、C、D為頂點(diǎn)的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時(shí),求拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索函數(shù) 的圖象和性質(zhì).
已知函數(shù)y=x(x>0)和的圖象如圖所示,若P為函數(shù)圖象上的點(diǎn),過P作PC垂直于x軸且與直線、雙曲線、x軸分別交于點(diǎn)A、B、C,則PC= =AC+BC,從而“點(diǎn)P可以看作點(diǎn)A的沿豎直方向向上平移BC個(gè)長度單位(PA=BC)而得到”.
(1)根據(jù)以上結(jié)論,請?jiān)谙聢D中作出函數(shù)圖象上的一些點(diǎn),并畫出該函數(shù)的圖象.
(2)觀察圖象,寫出函數(shù)兩條不同類型的性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300(km)的M、N兩地同時(shí)出發(fā)相向而行,其中甲到達(dá)N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象.
(1)試求線段AB所對應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)它們行駛到與各自出發(fā)地距離相等時(shí),用了4.5(h),求乙車的速度;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).
()試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式.
()求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com