如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.
(1)求點C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?
考點:反比例函數(shù)綜合題。
分析:(1)C點的縱坐標(biāo)與D的縱坐標(biāo)相同,過點C作CE⊥AB于點E,則△AOD≌△BEC,即可求得BE的長度,則OE的長度即可求得,即可求得C的橫坐標(biāo),然后利用待定系數(shù)法即可求得反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個單位后,點B向上平移2個單位長度得到的點的坐標(biāo)即可得到,代入函數(shù)解析式判斷即可.
解答:解:(1)過點C作CE⊥AB于點E,
∵四邊形ABCD是等腰梯形,
∴AD=BC,DO=CE,
∴△AOD≌△BEC,∴AO=BE=2,
∵BO=6,∴DC=OE=4,
∴C(4,3);
設(shè)反比例函數(shù)的解析式y(tǒng)=(k≠0),
根據(jù)題意得:3=,
解得k=12;
∴反比例函數(shù)的解析式y(tǒng)=;
(2)將等腰梯形ABCD向上平移2個單位后得到梯形A′B′C′D′得點B′(6,2),
故當(dāng)x=6時,y==2,即點B′恰好落在雙曲線上.
點評:本題是反比例函數(shù)與梯形的綜合題,以及待定系數(shù)法求函數(shù)的解析式,利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com