在平行四邊形ABCD中,AC=4,BD=6,P是BD上的.任一點(diǎn),過(guò)P作EF∥AC,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn).如圖,設(shè)BP=x,EF=y,則能反映y與x之間關(guān)系的圖象為( )

A.
B.
C.
D.
【答案】分析:圖象是函數(shù)關(guān)系的直觀表現(xiàn),因此須先求出函數(shù)關(guān)系式.分兩段求:當(dāng)P在BO上和P在OD上,分別求出兩函數(shù)解析式,根據(jù)函數(shù)解析式的性質(zhì)即可得出函數(shù)圖象.
解答:解:設(shè)AC與BD交于O點(diǎn),
當(dāng)P在BO上時(shí),
∵EF∥AC


當(dāng)P在OD上時(shí),有
∴y=
故選A.
點(diǎn)評(píng):此題為一次函數(shù)與相似形的綜合題,有一定難度.1、要看圖象先求關(guān)系式.2、分段求關(guān)系式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點(diǎn)E是AD的中點(diǎn),點(diǎn)O是AB邊上一點(diǎn),且AO=AE,過(guò)點(diǎn)E作直線HF交DC于點(diǎn)H,交BA的延長(zhǎng)線于F,以O(shè)E所在直線為對(duì)稱(chēng)軸,△FEO經(jīng)軸對(duì)稱(chēng)變換后得到△F′EO,直線EF′交直線DC于點(diǎn)M.
(1)求證:AD∥OF′;
(2)若M點(diǎn)在點(diǎn)H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長(zhǎng)是
48
48

查看答案和解析>>

同步練習(xí)冊(cè)答案