【題目】小明想利用太陽(yáng)光測(cè)量樓高.他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:
如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A,E,C在同一直線上).已知小明的身高EF是1.7m,請(qǐng)你幫小明求出樓高AB.(結(jié)果精確到0.1m)

【答案】解:過(guò)點(diǎn)D作DG⊥AB,分別交AB、EF于點(diǎn)G、H,
∵AB∥CD,DG⊥AB,AB⊥AC,
∴四邊形ACDG是矩形,
∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,
∵EF∥AB,
,
由題意,知FH=EF﹣EH=1.7﹣1.2=0.5,
,解得,BG=18.75,
∴AB=BG+AG=18.75+1.2=19.95≈20.0.
∴樓高AB約為20.0米.

【解析】此題屬于實(shí)際應(yīng)用問(wèn)題,解題的關(guān)鍵是將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題進(jìn)行解答;解題時(shí)要注意構(gòu)造相似三角形,利用相似三角形的性質(zhì)解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ, BP=CQ.

(1)求證:△ABP≌△ACQ;

(2)請(qǐng)判斷△APQ是什么形狀的三角形?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,下列給出四個(gè)結(jié)論中,正確結(jié)論的個(gè)數(shù)是( )個(gè)
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
<0;
⑤4a﹣2b+c>0.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC中,AB=BC=AC=12cm現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s點(diǎn)N的速度為2cm/s當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng)

1點(diǎn)M、N運(yùn)動(dòng)幾秒后M、N兩點(diǎn)重合?

2點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形AMN?

3當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí)能否得到以MN為底邊的等腰三角形?如存在請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)EAB上,點(diǎn)DCB的延長(zhǎng)線上,且ED=EC,如圖,試確定線段AEDB的大小關(guān)系,并說(shuō)明理由”.

(1)當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),如圖1,確定線段AEDB的大小關(guān)系,直接寫出結(jié)論:AE   DB

(填“>”,“<”“=”).

(2)證明你得出的以上(1),如圖2,過(guò)點(diǎn)EEFBC,交AC于點(diǎn)F.

(3)在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED = EC.若ABC的邊長(zhǎng)為1,AE = 2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊△ABC的高為6,在這個(gè)三角形所在的平面內(nèi)有一點(diǎn)P,若點(diǎn)P到直線AB的距離是1,點(diǎn)P到直線AC的距離是3,則點(diǎn)P到直線BC的距離可能是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動(dòng)點(diǎn)P , Q分別從點(diǎn)BD同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿BCD運(yùn)動(dòng),到點(diǎn)D停止,點(diǎn)Q沿DOB運(yùn)動(dòng),到點(diǎn)O停止1s后繼續(xù)運(yùn)動(dòng),到點(diǎn)B停止,連接APAQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).

(1)填空:AB=cm,ABCD之間的距離為cm;
(2)當(dāng)4≤x≤10時(shí),求yx之間的函數(shù)解析式;
(3)直接寫出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與菱形ABCD一邊平行的所有x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案