【題目】為了解某中學(xué)學(xué)生對厲行勤儉節(jié)約,反對鋪張浪費(fèi)主題活動(dòng)的參與情況,小衛(wèi)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生,就某日午飯浪費(fèi)飯菜情況進(jìn)行了調(diào)查.調(diào)查內(nèi)容分為四組:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩余;D.飯和菜都有剩余.根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

回答下列問題:

1)扇形統(tǒng)計(jì)圖中,“B所對應(yīng)的圓心角的度數(shù)是_______;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)已知該中學(xué)共有學(xué)生2500人,請估計(jì)這日午飯有剩飯的學(xué)生人數(shù);若按平均每人剩10克米飯計(jì)算,這日午飯將浪費(fèi)多少千克米飯?.

【答案】172°;(2)見解析;(3)這日午飯有剩飯的學(xué)生人數(shù)是750人,將浪費(fèi)7.5千克米飯

【解析】

1)用A組人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);求出B組所占的百分比,再乘以360°即可得出“B所對應(yīng)的圓心角的度數(shù);

2)用調(diào)查的總?cè)藬?shù)乘以C組所占的百分比得出C組的人數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;

3)先求出這日午飯有剩飯的學(xué)生人數(shù)為:2500×20%+×100%)=750(人),再用人數(shù)乘每人平均剩10克米飯,把結(jié)果化為千克.

1)這次被抽查的學(xué)生數(shù)=66÷55%=120(人),
“B所對應(yīng)的圓心角的度數(shù)為:360°×=72°
故答案為72°;
2B組的人數(shù)為:120-66-18-12=24(人);

補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:

32500 (20%+) = 750(人)

75010=7500(克)=7.5(千克)

答:這日午飯有剩飯的學(xué)生人數(shù)是750人,將浪費(fèi)75千克米飯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、D重合).

(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+ADO=50°時(shí),∠A =   °;

(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠C的度數(shù);

(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請直接寫出∠ABO與∠ADO的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

商店經(jīng)營有A、B兩種品牌的筆,A種筆的單價(jià)比B種筆的單價(jià)貴2元,若花140A種筆,120元買B種筆,則A種筆反而比B種筆少一支.

1)求A、B兩種品牌的筆每支各多少元.

2)某單位準(zhǔn)備一次性購買兩種筆共200支,預(yù)計(jì)費(fèi)用不超過1800元.并且規(guī)定,A種筆的數(shù)量不能少于B種筆的.問如何購買,單位花錢最少?最少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭州市自2019121日起推行垃圾分類,廣大市民對垃圾桶的需求劇增.為滿足市場需求,某超市花了7900元購進(jìn)大小不同的兩種垃圾桶共800個(gè),其中,大桶和小桶的進(jìn)價(jià)及售價(jià)如表所示.

大桶

小桶

進(jìn)價(jià)(元/個(gè))

18

5

售價(jià)(元/個(gè))

20

8

1)該超市購進(jìn)大桶和小桶各多少個(gè)?

2)當(dāng)小桶售出了300個(gè)后,商家決定將剩下的小桶的售價(jià)降低1元銷售,并把其中一定數(shù)量的小桶作為贈(zèng)品,在顧客購買大桶時(shí),買一贈(zèng)一(買一個(gè)大桶送一個(gè)小桶),送完即止.

請問:超市要使這批垃圾桶售完后獲得的利潤為1550元,那么小桶作為贈(zèng)品送出多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EDC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCF,連接EF.若∠EFD=15°,則∠CDF的度數(shù)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,射線CMBC,且BC=4,AB=1,點(diǎn)P是線段BC(不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過點(diǎn)PDPAP交射線CM于點(diǎn)D,連結(jié)AD.

(1)如圖1,若BP=3,求△ABP的周長;

(2)如圖2,若DP平分∠ADC,試猜測PBPC的數(shù)量關(guān)系,并說明理由;

(3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對稱點(diǎn)B′,連結(jié)B′D,則B′D=_____.(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為邊長不變的等腰直角三角形,,,在外取一點(diǎn),以為直角頂點(diǎn)作等腰直角,其中內(nèi)部,,,當(dāng)E、P、D三點(diǎn)共線時(shí),

下列結(jié)論:

E、P、D共線時(shí),點(diǎn)到直線的距離為;

E、PD共線時(shí),;

;

④作點(diǎn)關(guān)于的對稱點(diǎn),在繞點(diǎn)旋轉(zhuǎn)的過程中,的最小值為;

繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)落在上,當(dāng)點(diǎn)落在上時(shí),取上一點(diǎn),使得,連接,則

其中正確結(jié)論的序號是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問題:

例題:已知二次三項(xiàng)式有一個(gè)因式是,求另一個(gè)因式以及的值.

解:設(shè)另一個(gè)因式為,得

,

,

解得,,

∴另一個(gè)因式為的值為

仿照例題方法解答:

1)若二次三項(xiàng)式的一個(gè)因式為,求另一個(gè)因式;

2)若二次三項(xiàng)式有一個(gè)因式是,求另一個(gè)因式以及的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的反比例函數(shù),且當(dāng)x2時(shí),y=﹣3

1)求yx之間的函數(shù)關(guān)系式;

2)畫出這個(gè)函數(shù)的圖象;

3)試判斷點(diǎn)P(﹣2,3)是否在這個(gè)函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案