【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)滿足,,則稱這兩個(gè)函數(shù)互為旋轉(zhuǎn)函數(shù)

求函數(shù)旋轉(zhuǎn)函數(shù)

小明是這樣思考的:由函數(shù)可知,,,根據(jù),,,求出,,,就能確定這個(gè)函數(shù)的旋轉(zhuǎn)函數(shù)

請(qǐng)參考小明的方法解決下面問(wèn)題:

(1)直接寫出函數(shù)旋轉(zhuǎn)函數(shù)

(2)若函數(shù)互為旋轉(zhuǎn)函數(shù),求的值;

(3)已知函數(shù)的圖象與軸交于點(diǎn)A、B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過(guò)點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)互為旋轉(zhuǎn)函數(shù)。

【答案】(1)、;(2)、-1;(3)、證明過(guò)程見(jiàn)解析

【解析】

試題分析:(1)、根據(jù)旋轉(zhuǎn)函數(shù)的定義求出另一個(gè)函數(shù)的a、b、c的值,從而得出函數(shù)解析式;(2)、根據(jù)定義得出m和n的二元一次方程組,從而得出答案;(3)、首先求出A、B、C三點(diǎn)的坐標(biāo),然后得出對(duì)稱點(diǎn)的坐標(biāo),從而求出函數(shù)解析式,然后根據(jù)新定義進(jìn)行判定.

試題解析:(1)

(2)、根據(jù)題意得

(3)、根據(jù)題意得 xx

經(jīng)過(guò)點(diǎn)A1,B1,C1的二次函數(shù)為

,

兩個(gè)函數(shù)互為旋轉(zhuǎn)函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把方程x(x+2)=5化成一般式,則a,b,c的值分別是( )
A.1,2,﹣5
B..1,2,﹣10
C..1,2,5
D..1,3,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABDC,ADBC,E,FDB上兩點(diǎn)且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= ( 。

A. 150° B. 40° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一組a ,b 的值說(shuō)明命題:a2=b2,則a=b”是錯(cuò)誤的,這組值可以是a= _________.,b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)PAB為直角三角形時(shí),AP的長(zhǎng)為 __________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.

(1)a=   ,c=   

(2)如圖所示,在(1)的條件下,若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB,則b=   ;

(3)在(1)(2)的條件下,若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x=   ,最小值為   

(4)在(1)(2)的條件下,若在點(diǎn)B處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)C處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于C的反稱點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P,滿足CP+CP=2r,則稱P為點(diǎn)P關(guān)于C的反稱點(diǎn),如圖為點(diǎn)P及其關(guān)于C的反稱點(diǎn)P的示意圖.特別地,當(dāng)點(diǎn)P與圓心C重合時(shí),規(guī)定CP=0.

(1)當(dāng)O的半徑為1時(shí).

分別判斷點(diǎn)M(2,1),N(,0),T(1,)關(guān)于O的反稱點(diǎn)是否存在?若存在,求其坐標(biāo);

點(diǎn)P在直線y=x+2上,若點(diǎn)P關(guān)于O的反稱點(diǎn)P存在,且點(diǎn)P不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;

(2)C的圓心在x軸上,半徑為1,直線y=x+2與x軸、y軸分別交于點(diǎn)A,B,若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于C的反稱點(diǎn)PC的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)某班同學(xué)在慶祝2015年元旦晚會(huì)上進(jìn)行抽獎(jiǎng)活動(dòng).在一個(gè)不透明的口

袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、2、3.隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再?gòu)闹须S

機(jī)摸出一個(gè)小球記下標(biāo)號(hào).

(1)請(qǐng)用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號(hào)的所有結(jié)果;

(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),求中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案