【題目】若等腰三角形的一邊長等于6,另一邊長等于4,則它的周長等于( 。
A. 15 B. 16 C. 14 D. 14或16
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某草莓種植農戶喜獲豐收,共收獲草莓2000kg.經市場調查,可采用批發(fā)、零售兩種銷售方式,這兩種銷售方式每kg草莓的利潤如下表:
銷售方式 | 批發(fā) | 零售 |
利潤(元/kg) | 6 | 12 |
設按計劃全部售出后的總利潤為y元,其中批發(fā)量為xkg.
(1)求y與x之間的函數關系式;
(2)若零售量不超過批發(fā)量的4倍,求該農戶按計劃全部售完后獲得的最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=,點D在BC延長線上,連接AD,過B作BE⊥AD,垂足為E,交AC于點F,連接CE.
(1)求證: CF=CD;
(2)求證: ;
(3)探究線段AE,BE,CE之間滿足的等量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數圖象上,當0<x1<x2時,y1<y2,其中正確的是( 。
A. ①②④ B. ①③ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com