【題目】如圖1,是由一些大小相同的小正方體組合成的簡(jiǎn)單幾何體,并放在墻角.(注:圖3、圖4、圖5每一個(gè)小方格的邊長(zhǎng)為1cm

1)該幾何體主視圖如圖3所示,請(qǐng)?jiān)趫D4方格紙中畫(huà)出它的俯視圖;

2)若將其露在外面的表面涂一層漆,則其涂漆面積為   cm2.(正方體的棱長(zhǎng)為1cm

3)用一些小立方塊搭一個(gè)幾何體,使它的主視圖和俯視圖如圖所示,它最少需要多少個(gè)小立方塊?最多需要多少個(gè)小立方塊?并在圖5方格紙中畫(huà)出需要最多小立方塊的幾何體的左視圖.

【答案】1)見(jiàn)解析;(216;(3)最少需要8個(gè)小立方塊,最多需要11個(gè)小立方塊,圖見(jiàn)解析

【解析】

1)由已知條件可知,俯視圖有4列,每列小正方數(shù)形數(shù)目分別為2,2,1,1.據(jù)此可畫(huà)出圖形;

2)先求出露在外面的面數(shù),再乘以1個(gè)面的面積即可求解;

3)依據(jù)俯視打地基,主視瘋狂蓋可得到它最少需要多少個(gè)小立方塊,最多需要多少個(gè)小立方塊,并在圖5方格紙中畫(huà)出需要最多小立方塊的幾何體的左視圖即可求解.

解:(1)如圖所示:

21×1×7+5+4

1×16

16cm2).

故其涂漆面積為16cm2

故答案為:16

3)如圖所示:

由圖知,最少需要8個(gè)小立方塊,最多需要11個(gè)小立方塊,

需要最多小立方塊的幾何體的左視圖如下:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)探究:

(1)如圖1,對(duì)折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展開(kāi);再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BM,同時(shí)得到線段BNMN.請(qǐng)你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.

(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MNBM的數(shù)量關(guān)系,寫(xiě)出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解題:

拆項(xiàng)法是因式分解中一種技巧較強(qiáng)的方法,它通常是把多項(xiàng)式中的某一項(xiàng)拆成幾項(xiàng),再分組分解,因而有時(shí)需要多次實(shí)驗(yàn)才能成功,例如把分解因式,這是一個(gè)三項(xiàng)式,最高次項(xiàng)是三次項(xiàng),一次項(xiàng)系數(shù)為零,本題既沒(méi)有公因式可提取,又不能直接應(yīng)用公式,因而考慮制造分組分解的條件,把常數(shù)項(xiàng)拆成13,原式就變成,再利用立方和與平方差先分解,解法如下:

原式

公式:,

根據(jù)上述論法和解法,

1)因式分解:;

2)因式分解:;

3)因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫(huà)出ABC關(guān)于點(diǎn)C成中心對(duì)稱的A1B1C;平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的A2B2C2;

(2)A1B1C和A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.

在線段AC上找一點(diǎn)P(不能借助圓規(guī)),使得,畫(huà)出點(diǎn)P的位置,并說(shuō)明理由.

求出中線段PA的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富課外活動(dòng),某校將購(gòu)買一些乒乓球拍和乒乓球,某商場(chǎng)銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價(jià)80元,乒乓球每盒定價(jià)20元,“國(guó)慶節(jié)”期間商場(chǎng)決定開(kāi)展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案.

方案一:買一副乒乓球拍送一盒乒乓球;

方案二:乒乓球拍和乒乓球都按定價(jià)的90%付款.

某校要到該商場(chǎng)購(gòu)買乒乓球拍20副,乒乓球(>20且為整數(shù))

1)若按方案一購(gòu)買,需付款 (用含的整式表示,要化簡(jiǎn)); 若按方案二購(gòu)買,需付款 (用含的整式表示,要化簡(jiǎn)).

2)若30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?

3)當(dāng)30時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫(xiě)出你的購(gòu)買方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案