如圖,直線與x軸、y軸分別交于B、A兩點,且A、B兩點的坐標(biāo)分別為A(0,6)、B(8,0)。現(xiàn)將線段AB繞著點B按順時針方向旋轉(zhuǎn)90o,得到線段BC。
(1)求直線的函數(shù)解析式
(2)求點C的坐標(biāo)及△OBC的面積
(3)坐標(biāo)軸上的是否存在一點P,使得△ABP的面積與△OBC的面積相等?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由。

(1)
(2)C點坐標(biāo)為(14,8);32
(3)當(dāng)P點在B點右邊時,P點坐標(biāo)為(,0),當(dāng)P點在B點左邊時,P點坐標(biāo)為(,0).

解析試題分析:(1)先設(shè)直線方程為y=kx+b,然后把A、B兩點坐標(biāo)代入求出直線的解析式;
(2)利用線段AB繞著點B按順時針方向旋轉(zhuǎn)90o得到線段BC,得出BC的斜率及BC的長,然后根據(jù)兩點距離公式求出C點的坐標(biāo),再根據(jù)三角形的面積公式求△OBC的面積;
(3)P點坐標(biāo)分在x軸、y軸兩種情況進行討論.
考點:一次函數(shù)解析式;勾股定理;三角形面積公式.
點評:利用數(shù)形結(jié)合求解是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉(zhuǎn)90°得到直線A1B1
請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關(guān)系為
 
(填“平行”或“垂直”);
(2)設(shè)(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線與x軸、y軸交于A、B兩點,且OA=OB=1,點P是反比例函數(shù)y=
1
2x
圖象在第一象限的分支上的任意一點,P點坐標(biāo)為(a,b),由點P分別向x軸,y軸作垂線PM、PN,垂足分別為M、N;PM、PN分別與直線交于點E,點F.
(1)設(shè)交點E、F都在線段AB上,分別求出點E、點F的坐標(biāo);(用含a的代數(shù)式表示)
(2)△AOF與△BOE是否一定相似?如果一定相似,請予以證明;如果不一定相似或一定不相似,請簡短說明理由;
(3)當(dāng)點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內(nèi)角中,大小始終保持不變的那個角和它的大小,并證明你的結(jié)論;
(4)在雙曲線y=
1
2x
上是否存在點P,使點P到直線AB的距離最短的點,若存在,請求出點P的坐標(biāo)及最短距離;若不存在,說明理由
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,直線與y軸的交點是(0,-3),則當(dāng)x<0時,( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉(zhuǎn)90°得到直線A1B1.請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關(guān)系為
垂直
垂直
(填“平行”或“垂直”)
(2)設(shè)(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆寧夏銀川市初三上學(xué)期期末數(shù)學(xué)卷 題型:解答題

如圖①,直線與x軸、y軸分別交于B、C兩點,點A在x軸負半軸上,且,拋物線經(jīng)過A、B、C三點,D為線段AB中點,點P(m,n)是該拋物線上的一個動點(其中m>0,n<0),連接DP交BC于點E.

(1)寫出A、B、C三點的坐標(biāo),并求拋物線的解析式;(5分)
(2) 當(dāng)△BDE是等腰三角形時,直接寫出此時點E的坐標(biāo);(3分)
(3)連結(jié)PC、PB,△PBC是否有最大面積?若有,求出△PBC的最大面積和此時P點的坐標(biāo);若沒有,請說明理由。(3分)

查看答案和解析>>

同步練習(xí)冊答案