【題目】如圖,在RtABC中,∠C90°,∠B30°,AC3,點DBC的中點,點E是邊AB上一動點,沿DE所在直線把△BDE翻折到△BDE的位置,BDAB于點F,若△ABF為直角三角形,則AE的長為_____

【答案】

【解析】

分兩種情形分別畫出圖形求解即可.

解:如圖1中,當∠AFB′=90°時.

RtABC中,∵∠B30°,AC3

AB2AC6,BC3

BDCD,

BDCD,

∵∠BFD90°,

∴∠BDF60°,

∴∠EDB=∠EDF30°,

∴∠B=∠EDB30°,

EBED,設BEDEx

RtEDF中,DE2EF,

x2x),

x

AE6

如圖2中,當∠ABF90°時,作EHAB′交AB′的延長線于H.設AEx

ADAD,CDDB′,

RtADCRtADB′(HL),

ACAB′=3,

∵∠ABE=∠ABF+∠EBF90°+30°=120°,

∴∠EBH60°,

RtEHB′中,BHBE6x),EHBH6x),

RtAEH中,∵EH2+AH2AE2,

∴[6x)]2+[3+6x)]2x2,

解得x,

綜上所述,滿足條件的AE的值為

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一種學生用計算器,進價為每臺20元,售價為每臺30元時,每周可賣160臺,如果每臺售價每上漲2元,每周就會少賣20臺,但廠家規(guī)定最高每臺售價不能超過33元,當計算器定價為多少元時,商場每周的利潤恰好為1680元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法合理的是( 。

A. 小明做了3次擲圖釘?shù)膶嶒灒l(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是

B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎

C. 某射擊運動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tanAOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點C,與AB交與點D,則COD的面積的值等于_____;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖1,在△ABC中,∠ACB90°,BCAC,點DAB上,DEABBCE,點FAE的中點

1)寫出線段FD與線段FC的關(guān)系并證明;

2)如圖2,將△BDE繞點B逆時針旋轉(zhuǎn)α0°<α90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;

3)將△BDE繞點B逆時針旋轉(zhuǎn)一周,如果BC4,BE2,直接寫出線段BF的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點DDEBCAB于點EDFABBC于點F

1)求證:四邊形BEDF為菱形;

2)如果∠A90°,∠C30°,BD6,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M,N分別是正方形ABCD的邊BC,CD上的點,且BM=CN, AM與BN交于點P,試探索AM與BN的關(guān)系.

(1)數(shù)量關(guān)系_____________________,并證明;

(2)位置關(guān)系_____________________,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.

(1)若方程有兩個實數(shù)根,求m的取值范圍;

(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

同步練習冊答案